A note on Misiurewicz polynomials
Journal de Théorie des Nombres de Bordeaux, Tome 32 (2020) no. 2, pp. 373-385.

Soit f c,d (x)=x d +c[x]. On appelle point de Misiurewicz une valeur c 0 pour laquelle f c 0 ,d a une orbite critique finie et strictement pré-périodique. Tout point de Misiurewicz appartient à ¯. Supposons que les points c 0 ,c 1 ¯ sont tels que les orbites de f c 0 ,d et de f c 1 ,d sont du même type. Une question classique est de savoir si c 0 et c 1 sont nécessairement conjugués sur . Récemment, certains progrès ont été réalisés par plusieurs auteurs pour répondre à cette question. Dans cette note, nous démontrons de nouveaux résultats dans le cas où d est un nombre premier. Tous les résultats connus jusqu’à présent portent sur des cas où la période est au plus 3. En particulier, notre travail est le premier à fournir des informations dans le cas de période plus grande que 3.

Let f c,d (x)=x d +c[x]. The c 0 values for which f c 0 ,d has a strictly pre-periodic finite critical orbit are called Misiurewicz points. Any Misiurewicz point lies in ¯. Suppose that the Misiurewicz points c 0 ,c 1 ¯ are such that the polynomials f c 0 ,d and f c 1 ,d have the same orbit type. One classical question is whether c 0 and c 1 need to be Galois conjugates or not. Recently there has been partial progress on this question by several authors. In this note, we prove some new results when d is a prime. All the results known so far were in the cases of period at most 3. In particular, our work is the first to say something provable in the cases of period greater than 3.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.1126
Classification : 11R09,  37P15
Mots clés : iteration, post-critically finite, Misiurewicz point
@article{JTNB_2020__32_2_373_0,
     author = {Vefa Goksel},
     title = {A note on {Misiurewicz} polynomials},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {373--385},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {32},
     number = {2},
     year = {2020},
     doi = {10.5802/jtnb.1126},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1126/}
}
Vefa Goksel. A note on Misiurewicz polynomials. Journal de Théorie des Nombres de Bordeaux, Tome 32 (2020) no. 2, pp. 373-385. doi : 10.5802/jtnb.1126. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1126/

[1] Robert Benedetto; Patrick Ingram; Rafe Jones; Michelle Manes; Joseph H. Silverman; Thomas J. Tucker Current trends and open problems in arithmetic dynamics, Bull. Am. Math. Soc., Volume 56 (2019) no. 4, pp. 611-685 | Article | MR 4007163 | Zbl 07124524

[2] Xavier Buff On postcritically finite unicritical polynomials, New York J. Math., Volume 24 (2018), pp. 1111-1122 | MR 3890968 | Zbl 1412.37084

[3] Xavier Buff; Adam L. Epstein; Sarah Koch Rational maps with a preperiodic critical point (2018) (https://arxiv.org/abs/1806.11221)

[4] Henri Cohen A course in computational algebraic number theory, Graduate Texts in Mathematics, Volume 138, Springer, 1993 | MR 1228206 | Zbl 0786.11071

[5] Vefa Goksel On the orbit of a post-critically finite polynomial of the form x d +c, Funct. Approximatio, Comment. Math., Volume 62 (2020) no. 1, pp. 95-104 | Article | MR 4074390 | Zbl 07225502

[6] Spencer Hamblen; Rafe Jones; Kalyani Madhu The density of primes in orbits of z d +c, Int. Math. Res. Not., Volume 2015 (2015) no. 7, pp. 1924-1958 | MR 3335237 | Zbl 1395.11128

[7] Benjamin Hutz; Adam Towsley Misiurewicz points for polynomial maps and transversality, New York J. Math., Volume 21 (2015), pp. 297-319 | MR 3358544 | Zbl 1391.37071

[8] Serge Lang Algebraic Number Theory, Graduate Texts in Mathematics, Volume 110, Springer, 1994 | Zbl 0811.11001

[9] Nicole R. Looper Dynamical Galois groups of trinomials and Odoni’s conjecture, Bull. Lond. Math. Soc., Volume 51 (2019) no. 2, pp. 278-292 | Article | MR 3937588 | Zbl 07094881

[10] Daniel A. Marcus Number Fields, Universitext, Springer, 1977 | MR 457396 | Zbl 0383.12001

[11] John Milnor Arithmetic of unicritical polynomial maps, Frontiers in Complex Dynamics: In Celebration of John Milnor’s 80th Birthday, Princeton University Press, 2012, pp. 15-23 | Zbl 1321.37051

[12] Joseph H. Silverman The arithmetic of dynamical systems, Graduate Texts in Mathematics, Volume 241, Springer, 2007 | MR 2316407 | Zbl 1130.37001