Dans cet article, nous considérons les relations linéaires entre les conjugués d’un nombre de Salem . Nous montrons qu’une telle relation provient d’une relation linéaire entre les conjugués de l’entier algébrique totalement réel correspondant . On montre également que le plus petit degré d’un nombre de Salem satisfaisant à une relation non triviale entre ces conjugués est tandis que la longueur la plus courte d’une relation linéaire non-triviale entre les conjugués d’un nombre de Salem est .
In this paper we consider linear relations with conjugates of a Salem number . We show that every such a relation arises from a linear relation between conjugates of the corresponding totally real algebraic integer . It is also shown that the smallest degree of a Salem number with a nontrivial relation between its conjugates is , whereas the smallest length of a nontrivial linear relation between the conjugates of a Salem number is .
Révisé le :
Accepté le :
Publié le :
Keywords: linear additive relations, Salem numbers, Pisot numbers, totally real algebraic numbers
Mots clés : Les relations linéaires additives, les nombres de Salem, les nombres de Pisot, les nombres algébriques totalement réels
@article{JTNB_2020__32_1_179_0, author = {Art\={u}ras Dubickas and Jonas Jankauskas}, title = {Linear relations with conjugates of a {Salem} number}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {179--191}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {1}, year = {2020}, doi = {10.5802/jtnb.1116}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1116/} }
TY - JOUR AU - Artūras Dubickas AU - Jonas Jankauskas TI - Linear relations with conjugates of a Salem number JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 179 EP - 191 VL - 32 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1116/ DO - 10.5802/jtnb.1116 LA - en ID - JTNB_2020__32_1_179_0 ER -
%0 Journal Article %A Artūras Dubickas %A Jonas Jankauskas %T Linear relations with conjugates of a Salem number %J Journal de théorie des nombres de Bordeaux %D 2020 %P 179-191 %V 32 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1116/ %R 10.5802/jtnb.1116 %G en %F JTNB_2020__32_1_179_0
Artūras Dubickas; Jonas Jankauskas. Linear relations with conjugates of a Salem number. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 179-191. doi : 10.5802/jtnb.1116. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1116/
[1] Polynomial relations between polynomial roots, J. Algebra, Volume 177 (1995), pp. 827-846 | DOI | MR | Zbl
[2] Cyclotomic points on curves, Number theory for the millennium I. Proceedings of the millennial conference on number theory, Urbana-Champaign, IL, USA, May 21–26, 2000, A K Peters, 2002, pp. 21-26 | Zbl
[3] Small Salem numbers, Duke Math. J., Volume 44 (1977), pp. 315-328 | DOI | MR | Zbl
[4] Galois theory of Salem polynomials, Proc. Camb. Philos. Soc., Volume 148 (2010) no. 1, pp. 47-54 | DOI | MR | Zbl
[5] Polynomials with nontrivial relations between their roots, Acta Arith., Volume 82 (1997) no. 3, pp. 293-302 | DOI | MR | Zbl
[6] On multiplicative and linear independence of polynomial roots, Proceedings of the Vienna conference, June 14-17, 1990, Vienna, Austria (Contributions to General Algebra), Volume 7, Hölder-Pichler-Tempsky; Teubner, 1991, pp. 127-135 | Zbl
[7] Relations between polynomial roots, Acta Arith., Volume 71 (1995) no. 1, pp. 65-77 | DOI | MR | Zbl
[8] On the degree of a linear form in conjugates of an algebraic number, Ill. J. Math., Volume 46 (2002) no. 2, pp. 571-585 | DOI | MR | Zbl
[9] Additive relations with conjugate algebraic numbers, Acta Arith., Volume 107 (2003) no. 1, pp. 35-43 | DOI | MR | Zbl
[10] No two non-real conjugates of a Pisot number have the same imaginary part, Math. Comput., Volume 86 (2017) no. 304, pp. 935-950 | DOI | MR | Zbl
[11] Simple linear relations between conjugate algebraic numbers of low degree, J. Ramanujan Math. Soc., Volume 30 (2015) no. 2, pp. 219-235 | MR | Zbl
[12] On the lines passing through two conjugates of a Salem number, Proc. Camb. Philos. Soc., Volume 144 (2008) no. 1, pp. 29-37 | DOI | MR | Zbl
[13] On an irreducibility theorem of A. Schinzel associated with coverings of the integers, Ill. J. Math., Volume 44 (2000) no. 3, pp. 633-643 | DOI | MR | Zbl
[14] On the irreducibility of 0, 1-polynomials of the form , Colloq. Math., Volume 99 (2004) no. 1, pp. 1-5 | DOI | MR | Zbl
[15] Linear relations between roots of polynomials, Acta Arith., Volume 89 (1999) no. 1, pp. 53-96 corrigendum in ibid. 110 (2003), no. 2, p. 203 | DOI | MR | Zbl
[16] On equations of prime degree, Mat. Sb., N. Ser., Volume 43 (1957), pp. 349-366 | MR | Zbl
[17] Linear dependence of conjugate elements, Mat. Sb., N. Ser., Volume 52 (1960), pp. 701-708 | MR | Zbl
[18] Galois extensions of prime degree and their primitive elements, Izv. Vyssh. Uchebn. Zaved., Mat., Volume 21 (1977), pp. 49-52 | MR | Zbl
[19] La relation linéaire entre les racines d’un polynôme, J. Théor. Nombres Bordeaux, Volume 19 (2007) no. 2, pp. 473-484 | DOI | Numdam | MR | Zbl
[20] À propos de la relation galoisienne , J. Théor. Nombres Bordeaux, Volume 22 (2010) no. 3, pp. 661-673 | MR | Zbl
[21] There are Salem numbers of every trace, Bull. Lond. Math. Soc., Volume 37 (2005) no. 1, pp. 25-36 | DOI | MR | Zbl
[22] A Remarkable Class of Algebraic Numbers. Proof of a Conjecture of Vijayaraghavan, Duke Math. J., Volume 11 (1944), pp. 103-107 | DOI | Zbl
[23] Power series with integral coefficients, Duke Math. J., Volume 12 (1945), pp. 153-173 | DOI | MR | Zbl
[24] Reducibility of polynomials and covering systems of congruences, Acta Arith., Volume 13 (1967), pp. 91-101 | DOI | MR | Zbl
[25] Conjugate algebraic numbers on conics, Acta Arith., Volume 40 (1982), pp. 333-346 | DOI | MR | Zbl
[26] Additive and multiplicative relations connecting conjugate algebraic numbers, J. Number Theory, Volume 23 (1986), pp. 243-254 | DOI | MR | Zbl
[27] Salem numbers of negative trace, Math. Comput., Volume 69 (2000) no. 230, pp. 827-838 | DOI | MR | Zbl
[28] Sur les relations entre les racines d’un polynôme, Acta Arith., Volume 131 (2008) no. 1, pp. 1-27 | DOI | MR | Zbl
Cité par Sources :