Numerical verification of the Cohen–Lenstra–Martinet heuristics and of Greenberg’s p-rationality conjecture
Journal de Théorie des Nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 159-177.

Dans cet article, nous entreprenons une expérimentation numérique pour donner des arguments en faveur de la conjecture de p-rationalité de Greenberg. Nous donnons une famille de corps biquadratiques p-rationnels et trouvons de nouveaux exemples numériques de corps p-rationnels multiquadratiques. Dans le cas des corps multiquadratiques et multicubiques, on montre que la conjecture de Greenberg est une conséquence de l’heuristique de Cohen–Lenstra–Martinet et d’une conjecture de Hofmann et Zhang sur le régulateur p-adique. Nous apportons de nouveaux résultats numériques en faveur de ces conjectures. Nous comparons les outils algorithmiques existants et proposons certaines améliorations.

In this paper we make a series of numerical experiments to support Greenberg’s p-rationality conjecture, we present a family of p-rational biquadratic fields and we find new examples of p-rational multiquadratic fields. In the case of multiquadratic and multicubic fields we show that the conjecture is a consequence of the Cohen–Lenstra–Martinet heuristic and of the conjecture of Hofmann and Zhang on the p-adic regulator, and we bring new numerical data to support the extensions of these conjectures. We compare the known algorithmic tools and propose some improvements.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/jtnb.1115
Classification : 11R29,  11Y40
Mots clés : class number, Cohen–Lenstra heuristic, p-rational number fields, p-adic regulator
@article{JTNB_2020__32_1_159_0,
     author = {Razvan Barbulescu and Jishnu Ray},
     title = {Numerical verification of the {Cohen{\textendash}Lenstra{\textendash}Martinet} heuristics and of {Greenberg{\textquoteright}s} $p$-rationality conjecture},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {159--177},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {32},
     number = {1},
     year = {2020},
     doi = {10.5802/jtnb.1115},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1115/}
}
Razvan Barbulescu; Jishnu Ray. Numerical verification of the Cohen–Lenstra–Martinet heuristics and of Greenberg’s $p$-rationality conjecture. Journal de Théorie des Nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 159-177. doi : 10.5802/jtnb.1115. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1115/

[1] Miho Aoki; Takashi Fukuda An Algorithm for Computing p-Class Groups of Abelian Number Fields, Algorithmic Number Theory – ANTS VII (Lecture Notes in Computer Science) Volume 4076 (2006) | Article | MR 2282915 | Zbl 1143.11368

[2] Razvan Barbulescu; Jishnu Ray Electronic manuscript of computations of “Numerical verification of the Cohen-Lenstra-Martinet heuristics and of Greenberg’s p-rationality conjecture”, 2017 (available online at https://webusers.imj-prg.fr/~razvan.barbaud/pRational/pRational.html)

[3] Jens Bauch; Daniel J. Bernstein; Henry de Valence; Tanja Lange; Christine Van Vredendaal Short generators without quantum computers: the case of multiquadratics, Advances in cryptology – EUROCRYPT 2017 (Lecture Notes in Computer Science) Volume 10210 (2017), pp. 27-59 | Article | MR 3652098 | Zbl 1410.11136

[4] Henri Cohen A course in computational algebraic number theory, Graduate Texts in Mathematics, Volume 138, Springer, 2013 | Zbl 0786.11071

[5] Henri Cohen; Hendrik W. Lenstra Jr. Heuristics on class groups, Number theory (New York, 1982) (Lecture Notes in Mathematics) Volume 1052, Springer, 1984, pp. 26-36 | Article | MR 750661

[6] Henri Cohen; Jacques Martinet Class groups of number fields: numerical heuristics, Math. Comput., Volume 48 (1987) no. 177, pp. 123-137 | Article | MR 866103 | Zbl 0627.12006

[7] Claus Fieker; Yinan Zhang An application of the p-adic analytic class number formula, LMS J. Comput. Math., Volume 19 (2016) no. 1, pp. 217-228 | Article | MR 3506905 | Zbl 1409.11094

[8] Georges Gras Class Field Theory: from theory to practice, Springer monographs of mathematics, Springer, 2013 | Zbl 1019.11032

[9] Marie-Nicole Gras Méthodes et algorithmes pour le calcul numérique du nombre de classes et des unités des extensions cubiques cycliques de Q, J. Reine Angew. Math., Volume 277 (1975) no. 89, 116 pages | MR 389845 | Zbl 0315.12007

[10] Ralph Greenberg Galois representations with open image, Ann. Math. Qué., Volume 40 (2016) no. 1, pp. 83-119 | Article | MR 3512524 | Zbl 1414.11151

[11] Tuomas Hakkarainen On the computation of class numbers of real abelian fields, Math. Comput., Volume 78 (2009) no. 265, pp. 555-573 | Article | MR 2448721 | Zbl 1214.11141

[12] Paul Hartung Proof of the existence of infinitely many imaginary quadratic fields whose class number is not divisible by 3, J. Number Theory, Volume 6 (1974) no. 4, pp. 276-278 | Article | MR 352040 | Zbl 0317.12003

[13] Tommy Hofmann; Yinan Zhang Valuations of p-adic regulators of cyclic cubic fields, J. Number Theory, Volume 169 (2016), pp. 86-102 | Article | MR 3531231 | Zbl 1409.11141

[14] Sigekatu Kuroda Über die Klassenzahlen algebraischer Zahlkörper, Nagoya Math. J., Volume 1 (1950), pp. 1-10 | Article | MR 0039759 | Zbl 0037.16101

[15] Franciscus Jozef van der Linden Class number computations of real abelian number fields, Math. Comput., Volume 39 (1982) no. 160, pp. 693-707 | Article | MR 669662 | Zbl 0505.12010

[16] Stéphane Louboutin L-functions and class numbers of imaginary quadratic fields and of quadratic extensions of an imaginary quadratic field, Math. Comput., Volume 59 (1992) no. 199, pp. 213-230 | MR 1134735 | Zbl 0752.11046

[17] Stéphane Louboutin Majorations explicites du résidu au point 1 des fonctions zêta de certains corps de nombres, J. Math. Soc. Japan, Volume 50 (1998) no. 1, pp. 57-69 | Article | Zbl 1040.11081

[18] Gunter Malle Cohen-Lenstra heuristic and roots of unity, J. Number Theory, Volume 128 (2008) no. 10, pp. 2823-2835 | Article | MR 2441080 | Zbl 1225.11143

[19] Abbas Movahhedi Sur les p-extensions des corps p-rationnels (1988) (Ph. D. Thesis)

[20] Abbas Movahhedi Sur les p-extensions des corps p-rationnels, Math. Nachr., Volume 149 (1990), pp. 163-176 | Article | MR 1124802 | Zbl 0723.11054

[21] Abbas Movahhedi; Thong Nguyen Quang Do Sur l’arithmétique des corps de nombres p-rationnels, Séminaire de Théorie des Nombres, Paris 1987–88 (Progress in Mathematics) Volume 81, Birkhäuser, 1990, pp. 155-200 | Article | MR 1042770 | Zbl 0703.11059

[22] Frédéric Pitoun; Firmin Varescon Computing the torsion of the p-ramified module of a number field, Math. Comput., Volume 84 (2015) no. 291, pp. 371-383 | Article | MR 3266966 | Zbl 1317.11110

[23] Oliver Schirokauer Discrete logarithms and local units, Philosophical Transactions of the Royal Society of London A: Math., Phys. and Eng. Sci., Volume 345 (1993) no. 1676, pp. 409-423 | MR 1253502 | Zbl 0795.11063

[24] The PARI Group PARI/GP version 2.9.0, 2016 (available from http://pari.math.u-bordeaux.fr/)

[25] The Sage Developers SageMath, the Sage Mathematics Software System (Version 7.5.1), 2016 (http://www.sagemath.org/)

[26] Lawrence C. Washington Introduction to cyclotomic fields, Graduate Texts in Mathematics, Volume 83, Springer, 1997, xiv+487 pages | Article | MR 1421575 | Zbl 0966.11047