On the p-adic Langlands correspondence for algebraic tori
Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 133-158.

Nous étendons les résultats de R.P. Langlands sur les représentations des groupes algébriques abéliens connexes. Pour démontrer nos théorèmes, nous considérons les caractères à valeurs dans un groupe topologique abélien divisible quelconque. Cela nous permet de prouver le cas abélien du programme de Langlands p-adique.

We extend the results by R.P. Langlands on representations of (connected) abelian algebraic groups. This is done by considering characters into any divisible abelian topological group. With this we can then prove what is known as the abelian case of the p-adic Langlands program.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1114
Classification : 11R39
Mots clés : $p$-adic, Langlands, tori
Christopher Birkbeck 1

1 Department of Mathematics University College London Gower street London, WC1E 6BT, UK
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2020__32_1_133_0,
     author = {Christopher Birkbeck},
     title = {On the $p$-adic {Langlands} correspondence for algebraic tori},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {133--158},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {32},
     number = {1},
     year = {2020},
     doi = {10.5802/jtnb.1114},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1114/}
}
TY  - JOUR
AU  - Christopher Birkbeck
TI  - On the $p$-adic Langlands correspondence for algebraic tori
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2020
SP  - 133
EP  - 158
VL  - 32
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1114/
DO  - 10.5802/jtnb.1114
LA  - en
ID  - JTNB_2020__32_1_133_0
ER  - 
%0 Journal Article
%A Christopher Birkbeck
%T On the $p$-adic Langlands correspondence for algebraic tori
%J Journal de théorie des nombres de Bordeaux
%D 2020
%P 133-158
%V 32
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1114/
%R 10.5802/jtnb.1114
%G en
%F JTNB_2020__32_1_133_0
Christopher Birkbeck. On the $p$-adic Langlands correspondence for algebraic tori. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 133-158. doi : 10.5802/jtnb.1114. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1114/

[1] Emil Artin; John T. Tate Class field theory, AMS Chelsea Publishing, 2009 | Zbl

[2] Christophe Breuil The emerging p-adic Langlands programme, Proceedings of the international congress of mathematicians (ICM 2010). Vol. II: Invited lectures (2010), pp. 203-230 | MR | Zbl

[3] Kenneth S. Brown Cohomology of Groups, Graduate Texts in Mathematics, 87, Springer, 1982 | Zbl

[4] Robert P. Langlands Representations of abelian algebraic groups, Pac. J. Math. (1997) no. Special Issue, pp. 231-250 (Olga Taussky-Todd: in memoriam) | DOI | MR | Zbl

[5] John S. Milne Arithmetic duality theorems, BookSurge, 2006 | Zbl

[6] Jürgen Neukirch Algebraic number theory, Grundlehren der Mathematischen Wissenschaften, 322, Springer, 1999 (transl. by N. Schappacher) | Zbl

[7] Joseph J. Rotman An Introduction to Homological Algebra, Universitext, Springer, 2009 | Zbl

[8] Jean-Pierre Serre Local fields, Graduate Texts in Mathematics, Springer, 1980 (transl. by M. J. Greenberg) | Zbl

[9] John T. Tate Number theoretic background, Automorphic forms, representations and L-functions (Proceedings of Symposia in Pure Mathematics), Volume 33, Part 2 (1979), pp. 3-26 | DOI | Zbl

[10] Charles A. Weibel An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, 38, Cambridge University Press, 1995 | Zbl

[11] Edwin Weiss Cohomology of Groups, Pure and Applied Mathematics, 34, Academic Press Inc., 1969 | MR | Zbl

Cité par Sources :