Soit un corps. Nous déterminons les sous-groupes finis de dont le cardinal n’est pas divisible par la caractéristique de , à conjugaison près. Dans le cas où est séparablement clos, nous montrons (via des arguments de la théorie des représentations des groupes finis) que deux sous-groupes isomorphes de sont conjugués. Nous obtenons le même résultat pour les sous-groupes finis irréductibles de . L’extension du cas séparablement clos au cas rationnel repose naturellement sur la cohomologie galoisienne. Plus précisément, nous calculons le premier groupe de cohomologie galoisienne du centralisateur de dans le en question, modulo l’action du normalisateur. Les résultats obtenus ici dans le cas semisimple simplement connexe sont différents des résultats déjà connus dans le cas du groupe adjoint . Enfin, nous déterminons le corps de définition d’un tel sous-groupe fini de , c’est-à-dire le corps minimal , tel que et tel que le groupe fini s’injecte dans .
Let is a field. We determine the finite subgroups of of cardinality prime to the characteristic of , up to conjugacy. When is separably closed, using representation theory of finite groups we show that isomorphic subgroups of are conjugate. We show this also for irreducible finite subgroups of . The extension of the separably closed to the rational case is naturally based on Galois cohomology: we compute the first Galois cohomology group of the centralizer of in the SL, modulo the action of the normalizer. The results we obtain here in the semisimple simply connected case are different than those already known in the case of the adjoint group . Finally, we determine the field of definition of such a finite subgroup of , that is, the minimal field with such that the finite group embeds in .
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1094
Mots clés : Galois cohomology, $\protect \mathrm{SL}(2,F)$, $\protect \mathrm{SL}(3,F)$, algebraic classification, rational classification, representation theory
@article{JTNB_2019__31_3_555_0, author = {Yuval Z. Flicker}, title = {Conjugacy classes of finite subgroups of $\protect \mathrm{SL}(2,F)$, $\protect \mathrm{SL}(3,\protect \bar{F})$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {555--571}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {3}, year = {2019}, doi = {10.5802/jtnb.1094}, mrnumber = {4102614}, zbl = {1441.14150}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1094/} }
TY - JOUR AU - Yuval Z. Flicker TI - Conjugacy classes of finite subgroups of $\protect \mathrm{SL}(2,F)$, $\protect \mathrm{SL}(3,\protect \bar{F})$ JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 555 EP - 571 VL - 31 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1094/ DO - 10.5802/jtnb.1094 LA - en ID - JTNB_2019__31_3_555_0 ER -
%0 Journal Article %A Yuval Z. Flicker %T Conjugacy classes of finite subgroups of $\protect \mathrm{SL}(2,F)$, $\protect \mathrm{SL}(3,\protect \bar{F})$ %J Journal de théorie des nombres de Bordeaux %D 2019 %P 555-571 %V 31 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1094/ %R 10.5802/jtnb.1094 %G en %F JTNB_2019__31_3_555_0
Yuval Z. Flicker. Conjugacy classes of finite subgroups of $\protect \mathrm{SL}(2,F)$, $\protect \mathrm{SL}(3,\protect \bar{F})$. Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 3, pp. 555-571. doi : 10.5802/jtnb.1094. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1094/
[1] Finite subgroups of , Vector bundles and complex geometry (Contemporary Mathematics), Volume 522, American Mathematical Society, 2010, pp. 23-29 | MR | Zbl
[2] The maximal subgroups of the low-dimensional finite classical groups, London Mathematical Society Lecture Note Series, 407, Cambridge University Press, 2013, xiv+438 pages | MR | Zbl
[3] Atlas of finite groups. Maximal subgroups and ordinary characters for simple groups, Clarendon Press, 1985 | Zbl
[4] The binary polyhedral groups and other generalizations of the quaternion group, Duke Math. J., Volume 7 (1940), pp. 367-379 | MR | Zbl
[5] Linear Groups (with an exposition of the Galois field theory), B. G. Teubner, 1901 | Zbl
[6] Group Representation Theory. Part A Ordinary Representation Theory, Pure and Applied Mathematics, 7, Marcel Dekker, 1971 | MR | Zbl
[7] Finite subgroups of and automorphy (preprint) | Numdam | Zbl
[8] The finite subgroups of (preprint) | Zbl
[9] Linearly reductive finite subgroup schemes of (preprint) | Zbl
[10] The Classification of the Finite Simple Groups. Part I, Chapter A: Almost simple -groups, Mathematical Surveys and Monographs, 40, American Mathematical Society, 1998, xvi+419 pages | Zbl
[11] Endliche Gruppen I, Grundlehren der mathematischen Wissenschaften, 134, Springer, 1967 | MR | Zbl
[12] Character Theory of Finite Groups, Pure and Applied Mathematics, 69, Academic Press Inc., 1976, xii+304 pages | MR | Zbl
[13] Finite Group Theory, Graduate Studies in Mathematics, 92, American Mathematical Society, 2008, xi+350 pages | MR | Zbl
[14] Determination of the ordinary and modular ternary linear groups, American M. S. Trans., Volume 12 (2011), pp. 207-242 | DOI | MR | Zbl
[15] Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972), pp. 259-331 | DOI | Zbl
[16] Galois cohomology, Springer, 1997, x+210 pages | Zbl
[17] Finite Groups: An Introduction, Surveys of Modern Mathematics, 10, International Press., 2016, ix+179 pages | MR | Zbl
Cité par Sources :