We prove a sharp asymptotic formula for certain oscillatory integrals that may be approached using the stationary phase method. The estimates are uniform in terms of auxiliary parameters, which is crucial for application in analytic number theory.
Nous prouvons une formule asymptotique précise pour certains types d’intégrales oscillatoires que l’on peut traiter par la méthode de la phase stationnaire. Les estimations sont uniformes en termes de paramètres auxiliaires, ce qui est crucial pour les applications en théorie analytique des nombres.
Accepted:
Published online:
DOI: 10.5802/jtnb.1072
Keywords: Oscillatory integrals, Stationary phase
Eren Mehmet Kıral 1; Ian Petrow 2; Matthew P. Young 1

@article{JTNB_2019__31_1_145_0, author = {Eren Mehmet K{\i}ral and Ian Petrow and Matthew P. Young}, title = {Oscillatory integrals with uniformity in parameters}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {145--159}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {1}, year = {2019}, doi = {10.5802/jtnb.1072}, mrnumber = {3994723}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1072/} }
TY - JOUR AU - Eren Mehmet Kıral AU - Ian Petrow AU - Matthew P. Young TI - Oscillatory integrals with uniformity in parameters JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 145 EP - 159 VL - 31 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1072/ DO - 10.5802/jtnb.1072 LA - en ID - JTNB_2019__31_1_145_0 ER -
%0 Journal Article %A Eren Mehmet Kıral %A Ian Petrow %A Matthew P. Young %T Oscillatory integrals with uniformity in parameters %J Journal de théorie des nombres de Bordeaux %D 2019 %P 145-159 %V 31 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1072/ %R 10.5802/jtnb.1072 %G en %F JTNB_2019__31_1_145_0
Eren Mehmet Kıral; Ian Petrow; Matthew P. Young. Oscillatory integrals with uniformity in parameters. Journal de théorie des nombres de Bordeaux, Volume 31 (2019) no. 1, pp. 145-159. doi : 10.5802/jtnb.1072. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1072/
[1] Distribution of Maass of holomorphic cusp forms, Duke Math. J., Volume 162 (2013) no. 14, pp. 2609-2644 | DOI | Zbl
[2] The cubic moment of central values of automorphic -functions, Ann. Math., Volume 151 (2000) no. 3, pp. 1175-1216 | DOI | MR | Zbl
[3] van der Corput’s method of exponential sums, London Mathematical Society Lecture Note Series, 126, Cambridge University Press, 1991 | MR | Zbl
[4] The analysis of linear partial differential operators. I. Distribution theory and Fourier analysis, Classics in Mathematics, Springer, 2003 | Zbl
[5] Area, lattice points, and exponential sums, London Mathematical Society Monographs. New Series, 13, Oxford University Press, 1996 | MR | Zbl
[6] Analytic number theory, Colloquium Publications, 53, American Mathematical Society, 2004 | MR | Zbl
[7] The fifth moment of modular -functions (2017) (https://arxiv.org/abs/1701.07507)
[8] A generalized cubic moment and the Petersson formula for newforms, Math. Ann., Volume 373 (2019) no. 1-2, pp. 287-353 | DOI | MR | Zbl
[9] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993 | MR | Zbl
[10] Semiclassical analysis, Graduate Studies in Mathematics, 138, American Mathematical Society, 2012 | MR | Zbl
Cited by Sources: