Pour un corps de nombres algébriques
For an algebraic number field
Mots-clés :
Daniel C. Mayer 1
@article{JTNB_2014__26_2_415_0, author = {Daniel C. Mayer}, title = {Principalization algorithm via class group structure}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {415--464}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {26}, number = {2}, year = {2014}, doi = {10.5802/jtnb.874}, mrnumber = {3320487}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.874/} }
TY - JOUR AU - Daniel C. Mayer TI - Principalization algorithm via class group structure JO - Journal de théorie des nombres de Bordeaux PY - 2014 SP - 415 EP - 464 VL - 26 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.874/ DO - 10.5802/jtnb.874 LA - en ID - JTNB_2014__26_2_415_0 ER -
%0 Journal Article %A Daniel C. Mayer %T Principalization algorithm via class group structure %J Journal de théorie des nombres de Bordeaux %D 2014 %P 415-464 %V 26 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.874/ %R 10.5802/jtnb.874 %G en %F JTNB_2014__26_2_415_0
Daniel C. Mayer. Principalization algorithm via class group structure. Journal de théorie des nombres de Bordeaux, Tome 26 (2014) no. 2, pp. 415-464. doi : 10.5802/jtnb.874. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.874/
[1] E. Artin, Beweis des allgemeinen Reziprozitätsgesetzes, Abh. Math. Sem. Univ. Hamburg 5, (1927), 353–363. | MR
[2] E. Artin, Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetz. Abh. Math. Sem. Univ. Hamburg 7, (1929), 46–51. | MR
[3] J. Ascione, G. Havas, and C. R. Leedham-Green, A computer aided classification of certain groups of prime power order, Bull. Austral. Math. Soc. 17, (1977), 257–274, Corrigendum 317–319, Microfiche Supplement p. 320. | MR | Zbl
[4] J. Ascione, On
[5] J. Ascione, On
[6] G. Bagnera, La composizione dei gruppi finiti il cui grado è la quinta potenza di un numero primo, Ann. di Mat., (Ser. 3) 1, (1898), 137–228.
[7] K. Belabas, Topics in computational algebraic number theory. J. Théor. Nombres Bordeaux, 16, (2004), 19–63. | Numdam | MR | Zbl
[8] H. U. Besche, B. Eick, and E. A. O’Brien, The SmallGroups Library — a Library of Groups of Small Order, (2005), an accepted and refereed GAP 4 package, available also in MAGMA.
[9] N. Blackburn, On a special class of
[10] N. Blackburn, On prime-power groups in which the derived group has two generators, Proc. Camb. Phil. Soc., 53, (1957), 19–27. | MR | Zbl
[11] J. R. Brink, The class field tower for imaginary quadratic number fields of type
[12] H. Dietrich, B. Eick, and D. Feichtenschlager, Investigating
[13] T. E. Easterfield, A classification of groups of order
[14] B. Eick and D. Feichtenschlager, Infinite sequences of
[15] B. Eick and C. Leedham-Green, On the classification of prime-power groups by coclass. Bull. London Math. Soc., 40, (2008), 274–288. | MR | Zbl
[16] B. Eick, C.R. Leedham-Green, M.F. Newman, and E.A. O’Brien, On the classification of groups of prime-power order by coclass: The
[17] C. Fieker, Computing class fields via the Artin map, Math. Comp., 70, 235 (2001), 1293–1303. | MR | Zbl
[18] G. W. Fung and H. C. Williams, On the computation of a table of complex cubic fields with discriminant
[19] Ph. Furtwängler, Beweis des Hauptidealsatzes für die Klassenkörper algebraischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg, 7, (1929), 14–36. | MR
[20] The GAP Group, GAP – Groups, Algorithms, and Programming — a System for Computational Discrete Algebra, Version 4.4.12, Aachen, Braunschweig, Fort Collins, St. Andrews, (2008), http://www.gap-system.org.
[21] P. Hall, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc., (ser. 2) 36, (1933), 29–95. | MR | Zbl
[22] P. Hall, The classification of prime-power groups, J. Reine Angew. Math., 182, (1940), 130–141. | MR | Zbl
[23] F.-P. Heider und B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. Reine Angew. Math., 336, (1982), 1–25. | MR | Zbl
[24] R. James, The groups of order
[25] H. Kisilevsky, Some results related to Hilbert’s theorem
[26] C. R. Leedham-Green and S. McKay, The structure of groups of prime power order, London Math. Soc. Monographs, New Series, 27, (2002) Oxford Univ. Press. | MR | Zbl
[27] C. R. Leedham-Green and M. F. Newman, Space groups and groups of prime power order I, Arch. Math., 35, (1980), 193–203. | MR | Zbl
[28] P. Llorente and J. Quer, On totally real cubic fields with discriminant
[29] D. C. Mayer, Principalization in complex
[30] D. C. Mayer, List of discriminants
[31] D. C. Mayer, The second
[32] D. C. Mayer, Transfers of metabelian
[33] D. C. Mayer, Multiplicities of dihedral discriminants, Math. Comp., 58, 198, (1992), 831–847 and S55–S58. | MR | Zbl
[34] D. C. Mayer, The distribution of second
[35] D. C. Mayer, Metabelian
[36] R. J. Miech, Metabelian
[37] B. Nebelung, Klassifikation metabelscher
[38] B. Nebelung, Anhang zu Klassifikation metabelscher
[39] The PARI Group, PARI/GP computer algebra system, Version 2.3.4, Bordeaux, (2008), http://pari.math.u-bordeaux.fr.
[40] A. Scholz, Idealklassen und Einheiten in kubischen Körpern, Monatsh. Math. Phys., 40, (1933), 211–222. | MR | Zbl
[41] A. Scholz und O. Taussky, Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einfluß auf den Klassenkörperturm, J. Reine Angew. Math., 171, (1934), 19–41. | Zbl
[42] O. Schreier, Über die Erweiterung von Gruppen II, Abh. Math. Sem. Univ. Hamburg, 4, (1926), 321–346. | MR
[43] O. Taussky, A remark concerning Hilbert’s Theorem
[44] G. F. Voronoĭ, O tselykh algebraicheskikh chislakh zavisyashchikh ot kornya uravneniya tretʼeĭ stepeni, Sanktpeterburg, Master’s Thesis (Russian), (1894). Engl. transl. of title: Concerning algebraic integers derivable from a root of an equation of the third degree.
[45] G. F. Voronoĭ, Ob odnom obobshchenii algorifma nepreryvnykh drobeĭ. Varshava, Doctoral Dissertation (Russian), (1896). Engl. transl. of title: On a generalization of the algorithm of continued fractions, Summary (by Wassilieff): Jahrb. Fortschr. Math. 27, (1896), 170–174.
Cité par Sources :