Pour un corps de nombres algébriques avec -groupe de classes du type , la structure des -groupes de classes des quatre extensions cubiques cycliques non-ramifiées , , de est calculée à l’aide de présentations du groupe de Galois métabélien du deuxième -corps de classes de Hilbert de . Dans le cas d’un corps de base quadratique , il est montré que la structure des -groupes de classes des quatre -corps détermine fréquemment le type de principalisation de -groupe de classes de dans . Ceci offre une alternative à l’algorithme de principalisation classique par Scholz et Taussky. Le nouvel algorithme qui est facilement automatisable et s’exécute très brièvement est implémenté en PARI/GP et est appliqué à tous les corps quadratiques de -groupe de classes du type et de discriminant pour obtenir des statistiques détaillées sur leurs types de principalisation et sur la distribution de leurs deuxièmes -groupes de classes sur des arbres divers de coclasses des graphes de coclasses , , dans le sens de Eick, Leedham-Green et Newman.
For an algebraic number field with -class group of type , the structure of the -class groups of the four unramified cyclic cubic extension fields , , of is calculated with the aid of presentations for the metabelian Galois group of the second Hilbert -class field of . In the case of a quadratic base field it is shown that the structure of the -class groups of the four -fields frequently determines the type of principalization of the -class group of in . This provides an alternative to the classical principalization algorithm by Scholz and Taussky. The new algorithm, which is easily automatizable and executes very quickly, is implemented in PARI/GP and is applied to all quadratic fields with -class group of type and discriminant to obtain extensive statistics of their principalization types and the distribution of their second -class groups on various coclass trees of the coclass graphs , , in the sense of Eick, Leedham-Green, and Newman.
Mots clés : $3$-class groups, principalization of $3$-classes, quadratic fields, cubic fields, $S_3$-fields, metabelian $3$-groups, coclass graphs
@article{JTNB_2014__26_2_415_0, author = {Daniel C. Mayer}, title = {Principalization algorithm via class group structure}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {415--464}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {26}, number = {2}, year = {2014}, doi = {10.5802/jtnb.874}, mrnumber = {3320487}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.874/} }
TY - JOUR AU - Daniel C. Mayer TI - Principalization algorithm via class group structure JO - Journal de théorie des nombres de Bordeaux PY - 2014 SP - 415 EP - 464 VL - 26 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.874/ DO - 10.5802/jtnb.874 LA - en ID - JTNB_2014__26_2_415_0 ER -
%0 Journal Article %A Daniel C. Mayer %T Principalization algorithm via class group structure %J Journal de théorie des nombres de Bordeaux %D 2014 %P 415-464 %V 26 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.874/ %R 10.5802/jtnb.874 %G en %F JTNB_2014__26_2_415_0
Daniel C. Mayer. Principalization algorithm via class group structure. Journal de théorie des nombres de Bordeaux, Tome 26 (2014) no. 2, pp. 415-464. doi : 10.5802/jtnb.874. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.874/
[1] E. Artin, Beweis des allgemeinen Reziprozitätsgesetzes, Abh. Math. Sem. Univ. Hamburg 5, (1927), 353–363. | MR
[2] E. Artin, Idealklassen in Oberkörpern und allgemeines Reziprozitätsgesetz. Abh. Math. Sem. Univ. Hamburg 7, (1929), 46–51. | MR
[3] J. Ascione, G. Havas, and C. R. Leedham-Green, A computer aided classification of certain groups of prime power order, Bull. Austral. Math. Soc. 17, (1977), 257–274, Corrigendum 317–319, Microfiche Supplement p. 320. | MR | Zbl
[4] J. Ascione, On -groups of second maximal class, Ph. D. Thesis, Australian National University, Canberra, (1979).
[5] J. Ascione, On -groups of second maximal class. Bull. Austral. Math. Soc., 21, (1980), 473–474. | Zbl
[6] G. Bagnera, La composizione dei gruppi finiti il cui grado è la quinta potenza di un numero primo, Ann. di Mat., (Ser. 3) 1, (1898), 137–228.
[7] K. Belabas, Topics in computational algebraic number theory. J. Théor. Nombres Bordeaux, 16, (2004), 19–63. | Numdam | MR | Zbl
[8] H. U. Besche, B. Eick, and E. A. O’Brien, The SmallGroups Library — a Library of Groups of Small Order, (2005), an accepted and refereed GAP 4 package, available also in MAGMA.
[9] N. Blackburn, On a special class of -groups, Acta Math., 100, (1958), 45–92. | MR | Zbl
[10] N. Blackburn, On prime-power groups in which the derived group has two generators, Proc. Camb. Phil. Soc., 53, (1957), 19–27. | MR | Zbl
[11] J. R. Brink, The class field tower for imaginary quadratic number fields of type , Dissertation, Ohio State University, (1984).
[12] H. Dietrich, B. Eick, and D. Feichtenschlager, Investigating -groups by coclass with GAP. Computational group theory and the theory of groups, Contemp. Math. 470, (2008), 45–61, AMS, Providence, RI. | MR | Zbl
[13] T. E. Easterfield, A classification of groups of order , Ph. D. Thesis, University of Cambridge, (1940).
[14] B. Eick and D. Feichtenschlager, Infinite sequences of -groups with fixed coclass, arXiv: 1006.0961 v1 [math.GR], 4 June 2010.
[15] B. Eick and C. Leedham-Green, On the classification of prime-power groups by coclass. Bull. London Math. Soc., 40, (2008), 274–288. | MR | Zbl
[16] B. Eick, C.R. Leedham-Green, M.F. Newman, and E.A. O’Brien, On the classification of groups of prime-power order by coclass: The -groups of coclass , Int. J. Algebra Comput., 23, 5, (2013), 1243–1288. | MR | Zbl
[17] C. Fieker, Computing class fields via the Artin map, Math. Comp., 70, 235 (2001), 1293–1303. | MR | Zbl
[18] G. W. Fung and H. C. Williams, On the computation of a table of complex cubic fields with discriminant , Math. Comp., 55, 191, (1990), 313–325. | MR | Zbl
[19] Ph. Furtwängler, Beweis des Hauptidealsatzes für die Klassenkörper algebraischer Zahlkörper, Abh. Math. Sem. Univ. Hamburg, 7, (1929), 14–36. | MR
[20] The GAP Group, GAP – Groups, Algorithms, and Programming — a System for Computational Discrete Algebra, Version 4.4.12, Aachen, Braunschweig, Fort Collins, St. Andrews, (2008), http://www.gap-system.org.
[21] P. Hall, A contribution to the theory of groups of prime-power order, Proc. London Math. Soc., (ser. 2) 36, (1933), 29–95. | MR | Zbl
[22] P. Hall, The classification of prime-power groups, J. Reine Angew. Math., 182, (1940), 130–141. | MR | Zbl
[23] F.-P. Heider und B. Schmithals, Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen, J. Reine Angew. Math., 336, (1982), 1–25. | MR | Zbl
[24] R. James, The groups of order ( an odd prime), Math. Comp., 34, 150, (1980), 613–637. | MR | Zbl
[25] H. Kisilevsky, Some results related to Hilbert’s theorem , J. Number Theory, 2, (1970), 199–206. | MR | Zbl
[26] C. R. Leedham-Green and S. McKay, The structure of groups of prime power order, London Math. Soc. Monographs, New Series, 27, (2002) Oxford Univ. Press. | MR | Zbl
[27] C. R. Leedham-Green and M. F. Newman, Space groups and groups of prime power order I, Arch. Math., 35, (1980), 193–203. | MR | Zbl
[28] P. Llorente and J. Quer, On totally real cubic fields with discriminant , Math. Comp., 50,182, (1988), 581–594. | MR | Zbl
[29] D. C. Mayer, Principalization in complex -fields, Congressus Numerantium, 80, (1991), 73–87. (Proceedings of the Twentieth Manitoba Conference on Numerical Mathematics and Computing, Winnipeg, Manitoba, Canada, 1990). | MR | Zbl
[30] D. C. Mayer, List of discriminants of totally real cubic fields , arranged according to their multiplicities and conductors , Computer Centre, Department of Computer Science, University of Manitoba, Winnipeg, Canada, (1991).
[31] D. C. Mayer, The second -class group of a number field, Int. J. Number Theory, 8, 2, (2012), 471–505, DOI 10.1142/S179304211250025X. | MR | Zbl
[32] D. C. Mayer, Transfers of metabelian -groups, Monatsh. Math., 166, 3–4, (2012), 467–495, DOI 10.1007/s00605-010-0277-x. | MR | Zbl
[33] D. C. Mayer, Multiplicities of dihedral discriminants, Math. Comp., 58, 198, (1992), 831–847 and S55–S58. | MR | Zbl
[34] D. C. Mayer, The distribution of second -class groups on coclass graphs, J. Théor. Nombres Bordeaux, 25, 2, (2013), 401–456. (27th Journées Arithmétiques, Faculty of Mathematics and Informatics, Vilnius University, Vilnius, Lithuania, 2011). | Numdam | MR | Zbl
[35] D. C. Mayer, Metabelian -groups with abelianization of type , Preprint, (2011).
[36] R. J. Miech, Metabelian -groups of maximal class, Trans. Amer. Math. Soc., 152, (1970), 331–373. | MR | Zbl
[37] B. Nebelung, Klassifikation metabelscher -Gruppen mit Faktorkommutatorgruppe vom Typ und Anwendung auf das Kapitulationsproblem, Inauguraldissertation, Band 1, Universität zu Köln, (1989).
[38] B. Nebelung, Anhang zu Klassifikation metabelscher -Gruppen mit Faktorkommutatorgruppe vom Typ und Anwendung auf das Kapitulationsproblem, Inauguraldissertation, Band 2, Universität zu Köln, (1989).
[39] The PARI Group, PARI/GP computer algebra system, Version 2.3.4, Bordeaux, (2008), http://pari.math.u-bordeaux.fr.
[40] A. Scholz, Idealklassen und Einheiten in kubischen Körpern, Monatsh. Math. Phys., 40, (1933), 211–222. | MR | Zbl
[41] A. Scholz und O. Taussky, Die Hauptideale der kubischen Klassenkörper imaginär quadratischer Zahlkörper: ihre rechnerische Bestimmung und ihr Einfluß auf den Klassenkörperturm, J. Reine Angew. Math., 171, (1934), 19–41. | Zbl
[42] O. Schreier, Über die Erweiterung von Gruppen II, Abh. Math. Sem. Univ. Hamburg, 4, (1926), 321–346. | MR
[43] O. Taussky, A remark concerning Hilbert’s Theorem , J. Reine Angew. Math., 239/240, (1970), 435–438. | MR | Zbl
[44] G. F. Voronoĭ, O tselykh algebraicheskikh chislakh zavisyashchikh ot kornya uravneniya tretʼeĭ stepeni, Sanktpeterburg, Master’s Thesis (Russian), (1894). Engl. transl. of title: Concerning algebraic integers derivable from a root of an equation of the third degree.
[45] G. F. Voronoĭ, Ob odnom obobshchenii algorifma nepreryvnykh drobeĭ. Varshava, Doctoral Dissertation (Russian), (1896). Engl. transl. of title: On a generalization of the algorithm of continued fractions, Summary (by Wassilieff): Jahrb. Fortschr. Math. 27, (1896), 170–174.
Cité par Sources :