Les normes de Petersson régularisées des séries d’Eisenstein de poids entier et demi-entier sont calculées. Nous utilisons ces résultats pour établir la formule de Kohnen–Zagier pour les séries d’Eisenstein.
The regularized Petersson norms of Eisenstein series of integral and half-integral weight are computed. We use these results to establish Kohnen–Zagier’s formula for Eisenstein series.
Révisé le : 2020-07-03
Accepté le : 2020-09-18
Publié le : 2021-01-08
Classification : 11F37, 11F11
Mots clés : Petersson norms, Eisenstein series, Kohnen–Zagier’s formula
@article{JTNB_2020__32_3_665_0, author = {Yoshinori Mizuno}, title = {Petersson norms of Eisenstein series and Kohnen--Zagier's formula}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {665--684}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {3}, year = {2020}, doi = {10.5802/jtnb.1138}, language = {en}, url = {https://jtnb.centre-mersenne.org/item/JTNB_2020__32_3_665_0/} }
Yoshinori Mizuno. Petersson norms of Eisenstein series and Kohnen–Zagier’s formula. Journal de Théorie des Nombres de Bordeaux, Tome 32 (2020) no. 3, pp. 665-684. doi : 10.5802/jtnb.1138. https://jtnb.centre-mersenne.org/item/JTNB_2020__32_3_665_0/
[1] A polyharmonic Maass form of depth 3/2 for , J. Math. Anal. Appl., Volume 468 (2018) no. 2, pp. 1018-1042
[2] Shifted polyharmonic Maass forms for , Acta Arith., Volume 185 (2018) no. 1, pp. 39-79 | Zbl 1440.11078
[3] Regularized inner products and errors of modularity, Int. Math. Res. Not., Volume 2017 (2017) no. 24, pp. 7420-7458
[4] Harmonic Maass forms and mock modular forms: theory and applications, Colloquium Publications, Volume 64, American Mathematical Society, 2017
[5] Eichler-Shimura theory for mock modular forms, Math. Ann., Volume 355 (2013) no. 3, pp. 1085-1121
[6] On two geometric theta lifts, Duke Math. J., Volume 125 (2004) no. 1, pp. 45-90 | Zbl 1088.11030
[7] Differential operators for harmonic weak Maass forms and the vanishing of Hecke eigenvalues, Math. Ann., Volume 342 (2008) no. 3, pp. 673-693 (corrigendum in ibid. 345 (2009), no. 1, p. 31)
[8] Sums involving the values at negative integers of -functions of quadratic characters, Math. Ann., Volume 217 (1975), pp. 271-285
[9] A converse theorem and the Saito–Kurokawa lift, Int. Math. Res. Not., Volume 1996 (1996) no. 7, pp. 347-355 | Zbl 0849.11039
[10] Real quadratic analogs of traces of singular moduli, Int. Math. Res. Not., Volume 2011 (2011) no. 13, pp. 3082-3094
[11] Regularized inner products of modular functions, Ramanujan J., Volume 41 (2016) no. 1-3, pp. 13-29 | Zbl 1418.11069
[12] Eisenstein series of 1/2-integral weight and the mean value of real Dirichlet -series, Invent. Math., Volume 80 (1985), pp. 185-208
[13] Heegner points and derivatives of -series. II, Math. Ann., Volume 278 (1987), pp. 497-562
[14] Petersson norms of Jacobi–Eisenstein series and Gross–Kohnen–Zagier’s formula (preprint)
[15] Mock modular forms whose shadows are Eisenstein series of integral weight, Math. Res. Lett., Volume 27 (2020) no. 2, pp. 435-463 | Zbl 07214390
[16] On zeta functions associated to symmetric matrices, II: Functional equations and special values, Nagoya Math. J., Volume 208 (2012), pp. 265-316
[17] Weak Maass–Poincare series and weight 3/2 mock modular forms, J. Number Theory, Volume 133 (2013) no. 8, pp. 2567-2587 (corrigendum in ibid. 159 (2016), p. 434-435)
[18] -adic analysis and mock modular forms (2010) (https://scholarspace.manoa.hawaii.edu/handle/10125/25934) (Ph. D. Thesis)
[19] Introduction to elliptic curves and modular forms, Graduate Texts in Mathematics, Volume 97, Springer, 1993
[20] Kernel functions of the twisted symmetric square of elliptic modular forms, Mathematika, Volume 64 (2018) no. 1, pp. 184-210 (corrigendum in ibid. 65 (2019), no. 1, p. 130-131)
[21] Modular forms of half-integral weight of , Math. Ann., Volume 28 (1980), pp. 249-266
[22] Fourier coefficients and modular forms of half-integral weight, Math. Ann., Volume 271 (1985), pp. 237-268 | Zbl 0542.10018
[23] Values of -series of modular forms at the center of the critical strip, Invent. Math., Volume 64 (1981), pp. 175-198
[24] On Saito–Kurokawa descent for congruence subgroups, Manuscr. Math., Volume 81 (1993) no. 1-2, pp. 161-182
[25] Modular forms, Springer Monographs in Mathematics, Springer, 2006
[26] Congruences for Fourier coefficients of lifted Siegel modular forms. I: Eisenstein lifts, Abh. Math. Semin. Univ. Hamb., Volume 75 (2005), pp. 97-120
[27] The Rankin–Selberg convolution for Cohen’s Eisenstein series of half integral weight, Abh. Math. Semin. Univ. Hamb., Volume 75 (2005), pp. 1-20
[28] Rankin–Selberg convolutions of noncuspidal half-integral weight Maass forms in the plus space, Nagoya Math. J., Volume 237 (2020), pp. 127-165
[29] NIST handbook of mathematical functions (Frank W. J. Olver; Daniel W. Lozier; Ronald F. Boisvert; Charles W. Clark, eds.), Cambridge University Press, 2010
[30] On the Petersson scalar product of arbitrary modular forms, Proc. Am. Math. Soc., Volume 142 (2014) no. 3, pp. 753-760
[31] On modular forms of half integral weight, Ann. Math., Volume 97 (1973), pp. 440-481 | Zbl 0266.10022
[32] On the holomorphy of certain Dirichlet series, Proc. Lond. Math. Soc., Volume 31 (1975), pp. 79-98 | Zbl 0311.10029
[33] Elementary Dirichlet series and modular forms, Springer Monographs in Mathematics, Springer, 2007
[34] Petersson scalar products and -functions arising from modular forms, Ramanujan J., Volume 52 (2020) no. 1, pp. 1-40
[35] Harmonic Maass form eigencurves, Res. Math. Sci., Volume 5 (2018) no. 2, 24, 16 pages
[36] Modular forms with integral and half-integral weights, Springer, 2012
[37] Nombres de classes et formes modulaires de poids 3/2, C. R. Math. Acad. Sci. Paris, Volume 281 (1975), pp. 883-886
[38] Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields, Modular functions of one variable VI (Bonn, 1976) (Lecture Notes in Mathematics) Volume 627, Springer, 1976, pp. 105-169
[39] The Rankin–Selberg method for automorphic functions which are not of rapid decay, J. Fac. Sci., Univ. Tokyo, Sect. I A, Volume 28 (1981), pp. 415-437
[40] Periods of modular forms and Jacobi theta functions, Invent. Math., Volume 104 (1991) no. 3, pp. 449-465
[41] Introduction to modular forms, From number theory to physics (Les Houches, 1989), Springer, 1992, pp. 238-291