We establish a general transference principle about the irrationality measure of points with
Nous établissons pour tout entier
Accepté le :
Publié le :
Keywords: exponents of Diophantine approximation, heights, Marnat–Moshchevitin transference inequalities, measures of rational approximation, simultaneous approximation
Ngoc Ai Van Nguyen 1 ; Anthony Poëls 2 ; Damien Roy 2

@article{JTNB_2020__32_2_387_0, author = {Ngoc Ai Van Nguyen and Anthony Po\"els and Damien Roy}, title = {A transference principle for simultaneous rational approximation}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {387--402}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {2}, year = {2020}, doi = {10.5802/jtnb.1127}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1127/} }
TY - JOUR AU - Ngoc Ai Van Nguyen AU - Anthony Poëls AU - Damien Roy TI - A transference principle for simultaneous rational approximation JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 387 EP - 402 VL - 32 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1127/ DO - 10.5802/jtnb.1127 LA - en ID - JTNB_2020__32_2_387_0 ER -
%0 Journal Article %A Ngoc Ai Van Nguyen %A Anthony Poëls %A Damien Roy %T A transference principle for simultaneous rational approximation %J Journal de théorie des nombres de Bordeaux %D 2020 %P 387-402 %V 32 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1127/ %R 10.5802/jtnb.1127 %G en %F JTNB_2020__32_2_387_0
Ngoc Ai Van Nguyen; Anthony Poëls; Damien Roy. A transference principle for simultaneous rational approximation. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 2, pp. 387-402. doi : 10.5802/jtnb.1127. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1127/
[1] Zum Khintchineschen “Übertragungssatz”, Tr. Tbilis. Mat. Inst., Volume 3 (1938), pp. 193-212 | Zbl
[2] Über eine Klasse linearer diophantischer Approximationen, Rend. Circ. Mat. Palermo, Volume 50 (1926), pp. 170-195 | DOI | Zbl
[3] Zur metrischen Theorie der diophantischen Approximationen, Math. Z., Volume 24 (1926) no. 1, pp. 706-714 | DOI | MR | Zbl
[4] Simultaneous Diophantine approximation: sums of squares and homogeneous polynomials, Acta Arith., Volume 190 (2019) no. 1, pp. 87-100 | DOI | MR | Zbl
[5] Exponents of Diophantine approximation in dimension two, Can. J. Math., Volume 61 (2009) no. 1, pp. 165-189 | DOI | MR | Zbl
[6] An optimal bound for the ratio between ordinary and uniform exponents of Diophantine approximation, Mathematika, Volume 66 (2020) no. 3, pp. 818-854 | DOI | MR
[7] Exponents for three-dimensional simultaneous Diophantine approximations, Czech. Math. J., Volume 62 (2012) no. 1, pp. 127-137 | DOI | MR | Zbl
[8] On some problems in Transcendental number theory and Diophantine approximation, Ph. D. Thesis, University of Ottawa (Canada) (2014) (https://ruor.uottawa.ca/handle/10393/30350)
[9] Rational approximation to real points on quadratic hypersurfaces (2019), 25 pages https://arxiv.org/abs/1909.01499, to appear in J. Lond. Math. Soc. (2)
[10] Parametric Geometry of Numbers, Ph. D. Thesis, University of Ottawa (Canada) (2019) (https://ruor.uottawa.ca/handle/10393/38871)
[11] Approximation to real numbers by cubic algebraic integers I, Proc. Lond. Math. Soc., Volume 88 (2004) no. 1, pp. 42-62 | MR | Zbl
[12] Rational approximation to real points on conics, Ann. Inst. Fourier, Volume 63 (2013) no. 6, pp. 2331-2348 | Numdam | MR | Zbl
[13] Diophantine Approximation, Lecture Notes in Mathematics, 785, Springer, 1980 | Zbl
[14] Diophantine Approximations and Diophantine Equations, Lecture Notes in Mathematics, 1467, Springer, 1991 | MR | Zbl
[15] Simultaneous approximation to three numbers, Mosc. J. Comb. Number Theory, Volume 3 (2013) no. 1, pp. 84-107 | MR | Zbl
Cité par Sources :