A note on Misiurewicz polynomials
Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 2, pp. 373-385.

Soit f c,d (x)=x d +c[x]. On appelle point de Misiurewicz une valeur c 0 pour laquelle f c 0 ,d a une orbite critique finie et strictement pré-périodique. Tout point de Misiurewicz appartient à ¯. Supposons que les points c 0 ,c 1 ¯ sont tels que les orbites de f c 0 ,d et de f c 1 ,d sont du même type. Une question classique est de savoir si c 0 et c 1 sont nécessairement conjugués sur . Récemment, certains progrès ont été réalisés par plusieurs auteurs pour répondre à cette question. Dans cette note, nous démontrons de nouveaux résultats dans le cas où d est un nombre premier. Tous les résultats connus jusqu’à présent portent sur des cas où la période est au plus 3. En particulier, notre travail est le premier à fournir des informations dans le cas de période plus grande que 3.

Let f c,d (x)=x d +c[x]. The c 0 values for which f c 0 ,d has a strictly pre-periodic finite critical orbit are called Misiurewicz points. Any Misiurewicz point lies in ¯. Suppose that the Misiurewicz points c 0 ,c 1 ¯ are such that the polynomials f c 0 ,d and f c 1 ,d have the same orbit type. One classical question is whether c 0 and c 1 need to be Galois conjugates or not. Recently there has been partial progress on this question by several authors. In this note, we prove some new results when d is a prime. All the results known so far were in the cases of period at most 3. In particular, our work is the first to say something provable in the cases of period greater than 3.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1126
Classification : 11R09, 37P15
Mots-clés : iteration, post-critically finite, Misiurewicz point

Vefa Goksel 1

1 Department of Mathematics and Statistics Lederle Graduate Research Tower, 1623D University of Massachusetts Amherst 710 N. Pleasant Street Amherst, MA 01003-9305, USA
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2020__32_2_373_0,
     author = {Vefa Goksel},
     title = {A note on {Misiurewicz} polynomials},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {373--385},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {32},
     number = {2},
     year = {2020},
     doi = {10.5802/jtnb.1126},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1126/}
}
TY  - JOUR
AU  - Vefa Goksel
TI  - A note on Misiurewicz polynomials
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2020
SP  - 373
EP  - 385
VL  - 32
IS  - 2
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1126/
DO  - 10.5802/jtnb.1126
LA  - en
ID  - JTNB_2020__32_2_373_0
ER  - 
%0 Journal Article
%A Vefa Goksel
%T A note on Misiurewicz polynomials
%J Journal de théorie des nombres de Bordeaux
%D 2020
%P 373-385
%V 32
%N 2
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1126/
%R 10.5802/jtnb.1126
%G en
%F JTNB_2020__32_2_373_0
Vefa Goksel. A note on Misiurewicz polynomials. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 2, pp. 373-385. doi : 10.5802/jtnb.1126. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1126/

[1] Robert Benedetto; Patrick Ingram; Rafe Jones; Michelle Manes; Joseph H. Silverman; Thomas J. Tucker Current trends and open problems in arithmetic dynamics, Bull. Am. Math. Soc., Volume 56 (2019) no. 4, pp. 611-685 | DOI | MR | Zbl

[2] Xavier Buff On postcritically finite unicritical polynomials, New York J. Math., Volume 24 (2018), pp. 1111-1122 | MR | Zbl

[3] Xavier Buff; Adam L. Epstein; Sarah Koch Rational maps with a preperiodic critical point (2018) (https://arxiv.org/abs/1806.11221)

[4] Henri Cohen A course in computational algebraic number theory, Graduate Texts in Mathematics, 138, Springer, 1993 | MR | Zbl

[5] Vefa Goksel On the orbit of a post-critically finite polynomial of the form x d +c, Funct. Approximatio, Comment. Math., Volume 62 (2020) no. 1, pp. 95-104 | DOI | MR | Zbl

[6] Spencer Hamblen; Rafe Jones; Kalyani Madhu The density of primes in orbits of z d +c, Int. Math. Res. Not., Volume 2015 (2015) no. 7, pp. 1924-1958 | MR | Zbl

[7] Benjamin Hutz; Adam Towsley Misiurewicz points for polynomial maps and transversality, New York J. Math., Volume 21 (2015), pp. 297-319 | MR | Zbl

[8] Serge Lang Algebraic Number Theory, Graduate Texts in Mathematics, 110, Springer, 1994 | Zbl

[9] Nicole R. Looper Dynamical Galois groups of trinomials and Odoni’s conjecture, Bull. Lond. Math. Soc., Volume 51 (2019) no. 2, pp. 278-292 | DOI | MR | Zbl

[10] Daniel A. Marcus Number Fields, Universitext, Springer, 1977 | MR | Zbl

[11] John Milnor Arithmetic of unicritical polynomial maps, Frontiers in Complex Dynamics: In Celebration of John Milnor’s 80th Birthday, Princeton University Press, 2012, pp. 15-23 | Zbl

[12] Joseph H. Silverman The arithmetic of dynamical systems, Graduate Texts in Mathematics, 241, Springer, 2007 | MR | Zbl

Cité par Sources :