In local class field theory, the Schmid–Witt symbol encodes interesting data about the ramification theory of
En théorie du corps de classes local, le symbole de Schmid–Witt encode des données intéressantes sur la ramification des
Révisé le :
Accepté le :
Publié le :
Keywords: Artin–Schreier–Witt, Schmid–Witt, higher local field, ramification groups
Matthew Schmidt 1

@article{JTNB_2020__32_2_355_0, author = {Matthew Schmidt}, title = {Schmid{\textquoteright}s {Formula} for {Higher} {Local} {Fields}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {355--371}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {32}, number = {2}, year = {2020}, doi = {10.5802/jtnb.1125}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1125/} }
TY - JOUR AU - Matthew Schmidt TI - Schmid’s Formula for Higher Local Fields JO - Journal de théorie des nombres de Bordeaux PY - 2020 SP - 355 EP - 371 VL - 32 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1125/ DO - 10.5802/jtnb.1125 LA - en ID - JTNB_2020__32_2_355_0 ER -
%0 Journal Article %A Matthew Schmidt %T Schmid’s Formula for Higher Local Fields %J Journal de théorie des nombres de Bordeaux %D 2020 %P 355-371 %V 32 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1125/ %R 10.5802/jtnb.1125 %G en %F JTNB_2020__32_2_355_0
Matthew Schmidt. Schmid’s Formula for Higher Local Fields. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 2, pp. 355-371. doi : 10.5802/jtnb.1125. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1125/
[1] Abelian local
[2] Sequential topologies and quotients of Milnor
[3] Wild ramification in the imperfect residue field case, Galois representations and arithmetic algebraic geometry (Advanced Studies in Pure Mathematics), Volume 12, North-Holland, 1987, pp. 287-314 | DOI | MR | Zbl
[4] A generalization of local class field theory by Using
[5] A generalization of local class field theory by Using
[6] A generalization of local class field theory by Using
[7] Witt Vectors and a Question of Keating and Rudnick, Int. Math. Res. Not., Volume 2013 (2014) no. 16, pp. 3613-3638 | DOI | Zbl
[8] Class formations II, J. Fac. Sci. Univ. Tokyo, Sect. I, Volume 7 (1956), pp. 353-389 | MR | Zbl
[9] On the Arithmetic of
[10] Genus growth in
[11] On the Ramification Theory of Two-dimensional Local Fields, Math. USSR, Sb., Volume 37 (1980) no. 3, pp. 349-365 | DOI | MR | Zbl
[12] An introduction to higher dimensional local fields and adeles (2012) (https://arxiv.org/abs/1204.0586)
[13] Local Class Field Theory, Tr. Mat. Inst. Steklova, Volume 165 (1985), pp. 157-185 | MR | Zbl
[14] Galois Cohomology and the Brauer Group of Local Fields, Tr. Mat. Inst. Steklova, Volume 183 (1991) no. 4, pp. 191-201 | MR | Zbl
[15] Über das Reziprozitätsgesetz in relativ-zyklischen algebraischen Funktionenkörpern mit endlichem Konstantenkörper, Math. Z., Volume 40 (1936) no. 1, pp. 94-109 | DOI | MR | Zbl
[16] Local Fields, Graduate Texts in Mathematics, 67, Springer, 1979 | Zbl
[17] Arithmétique des extensions d’Artin-Schreier-Witt, Ph. D. Thesis, Université de Toulouse II le Mirail (France) (2005)
[18] Ramification groups in Artin-Schreier-Witt extensions, J. Théor. Nombres Bordeaux, Volume 17 (2005) no. 2, pp. 689-720 | DOI | Numdam | MR | Zbl
[19] Zyklische Körper und Algebren der Charakteristik
[20] Higher dimensional local fields, Invitation to higher local fields (Geometry and Topology Monographs), Volume 3, Geometry & Topology Publications, 2000 | MR | Zbl
Cité par Sources :