On finiteness of odd superperfect numbers
Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 259-274.

On montre de nouveaux résultats sur l’équation σ(N)=aM, σ(M)=bN. On en déduit, comme corollaire, qu’il n’existe qu’un nombre fini de nombres impairs superparfaits ayant un nombre fixé de facteurs premiers distincts.

Some new results concerning the equation σ(N)=aM, σ(M)=bN are proved. As a corollary, there are only finitely many odd superperfect numbers with a fixed number of distinct prime factors.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1121
Classification : 11A25, 11A05, 11D61, 11J86
Mots-clés : Odd perfect numbers, multiperfect numbers, superperfect number; the sum of divisors, arithmetic functions, exponential diophantine equations.

Tomohiro Yamada 1

1 Center for Japanese language and culture, Osaka University, 562-8558, 8-1-1, Aomatanihigashi, Minoo, Osaka, Japan
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2020__32_1_259_0,
     author = {Tomohiro Yamada},
     title = {On finiteness of odd superperfect numbers},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {259--274},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {32},
     number = {1},
     year = {2020},
     doi = {10.5802/jtnb.1121},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1121/}
}
TY  - JOUR
AU  - Tomohiro Yamada
TI  - On finiteness of odd superperfect numbers
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2020
SP  - 259
EP  - 274
VL  - 32
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1121/
DO  - 10.5802/jtnb.1121
LA  - en
ID  - JTNB_2020__32_1_259_0
ER  - 
%0 Journal Article
%A Tomohiro Yamada
%T On finiteness of odd superperfect numbers
%J Journal de théorie des nombres de Bordeaux
%D 2020
%P 259-274
%V 32
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1121/
%R 10.5802/jtnb.1121
%G en
%F JTNB_2020__32_1_259_0
Tomohiro Yamada. On finiteness of odd superperfect numbers. Journal de théorie des nombres de Bordeaux, Tome 32 (2020) no. 1, pp. 259-274. doi : 10.5802/jtnb.1121. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1121/

[1] Yann Bugeaud; Kálmán Győry Bounds for the solutions of Thue-Mahler equations and norm form equations, Acta Arith., Volume 74 (1996) no. 3, pp. 273-292 | DOI | MR | Zbl

[2] John Coates An effective p-adic analogue of a theorem of Thue. II: The greatest prime factor of a binary form, Acta Arith., Volume 16 (1969), pp. 399-412 | DOI | MR | Zbl

[3] G. G. Dandapat; John L. Hunsucker; Carl Pomerance Some new results on odd perfect numbers, Pac. J. Math., Volume 57 (1975), pp. 359-364 | DOI | MR | Zbl

[4] Leonard E. Dickson Finiteness of the odd perfect and primitive abundant numbers with n distinct prime factors, American J., Volume 35 (1913), pp. 413-422 | MR | Zbl

[5] Jan-Hendrik Evertse On equations in S-units and the Thue-Mahler equation, Invent. Math., Volume 75 (1984), pp. 561-584 | DOI | MR | Zbl

[6] Jan-Hendrik Evertse The number of solutions of the Thue–Mahler equation, J. Reine Angew. Math., Volume 482 (1997), pp. 121-149 | MR

[7] Naum I. Fel’dman Improved estimate for a linear form of the logarithms of algebraic numbers, Mat. Sb., Volume 77 (1968), pp. 423-436 translation in Math. USSR, Sb. 6 (1968), p. 393-406

[8] Sergey V. Kotov Greatest prime factor of a polynomial, Mat. Zametki, Volume 13 (1973), pp. 515-522 translation in Math. Notes 13 (1973), p. 313-317 | MR | Zbl

[9] E. M. Matveev An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers. II, Izv. Ross. Akad. Nauk, Ser. Mat., Volume 64 (2000) no. 6, pp. 125-180 translation in Izv. Math. 64 (2000), no. 6, p. 127–169 | MR | Zbl

[10] Pace P. Nielsen An upper bound for odd perfect numbers, Integers, Volume 3 (2003), A14, 9 pages | MR | Zbl

[11] Pace P. Nielsen Odd perfect numbers, diophantine equation, and upper bounds, Math. Comput., Volume 84 (2015), pp. 2549-2567 | DOI | MR | Zbl

[12] Carl Pomerance On multiply perfect numbers with a special property, Pac. J. Math., Volume 57 (1975), pp. 511-517 | DOI | MR | Zbl

[13] Carl Pomerance Multiply perfect numbers, Mersenne primes and effective computability, Math. Ann., Volume 226 (1977), pp. 195-206 | DOI | MR | Zbl

[14] Andrzej Schinzel On two theorems of Gelfond and some of their applications, Acta Arith., Volume 13 (1967), pp. 177-236 | DOI | MR | Zbl

[15] Wolfgang A. Schmidt Diophantine approximations and diophantine equations, Lecture Notes in Mathematics, 1467, Springer, 1991 | MR | Zbl

[16] Tarlok N. Shorey; Robert Tijdeman Exponential diophantine equations, Cambridge Tracts in Mathematics, 87, Cambridge University Press, 1986 | MR | Zbl

[17] D. Suryanarayana Super perfect numbers, Elem. Math., Volume 24 (1969), pp. 16-17 | MR | Zbl

[18] D. Suryanarayana There is no odd super perfect number of the form p 2α , Elem. Math., Volume 28 (1973), pp. 148-150 | MR | Zbl

[19] Tomohiro Yamada Problem 005:10, 2005 (Western Number Theory Problems, http://www.ma.utexas.edu/users/goddardb/WCNT11/problems2005.pdf)

[20] Tomohiro Yamada Unitary super perfect numbers, Math. Pannonica, Volume 19 (2008), pp. 37-47 | MR | Zbl

[21] Karl Zsigmondy Zur Theorie der Potenzreste, Monatsh. Math., Volume 3 (1892), pp. 265-284 | DOI | MR | Zbl

Cité par Sources :