GL 2 ×GSp 2 L-values and Hecke eigenvalue congruences
Journal de Théorie des Nombres de Bordeaux, Tome 31 (2019) no. 3, pp. 751-775.

Nous trouvons des exemples expérimentaux de congruences entre les valeurs propres des opérateurs de Hecke des représentations automorphes de certains groupes (comme GSp 2 (𝔸), SO(4,3)(𝔸) et SO(5,4)(𝔸)) dans lesquelles le module est un nombre premier qui doit, pour de diverses raisons, apparaître dans la partie algébrique d’une valeur critique de la fonction L du « produit tensoriel » associée à des représentations automorphes cuspidales de GL 2 (𝔸) et GSp 2 (𝔸). En utilisant des techniques spéciales pour évaluer les fonctions L avec peu de coefficients connus, nous trouvons des approximations suffisantes pour détecter les diviseurs premiers prédits.

We find experimental examples of congruences of Hecke eigenvalues between automorphic representations of groups such as GSp 2 (𝔸), SO(4,3)(𝔸) and SO(5,4)(𝔸), where the prime modulus should, for various reasons, appear in the algebraic part of a critical “tensor-product” L-value associated to cuspidal automorphic representations of GL 2 (𝔸) and GSp 2 (𝔸). Using special techniques for evaluating L-functions with few known coefficients, we compute sufficiently good approximations to detect the anticipated prime divisors.

Reçu le : 2019-03-05
Révisé le : 2019-09-09
Accepté le : 2019-10-24
Publié le : 2020-05-06
DOI : https://doi.org/10.5802/jtnb.1108
Classification : 11F33,  11F46,  14G10
Mots clés: Automorphic representations, Hecke-eigenvalues, congruences, L-values
@article{JTNB_2019__31_3_751_0,
     author = {Jonas Bergstr\"om and Neil Dummigan and David Farmer and Sally Koutsoliotas},
     title = {$\protect \mathrm{GL}\_2\times \protect \mathrm{GSp}\_2$ $L$-values and Hecke eigenvalue congruences},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {31},
     number = {3},
     year = {2019},
     pages = {751-775},
     doi = {10.5802/jtnb.1108},
     language = {en},
     url = {jtnb.centre-mersenne.org/item/JTNB_2019__31_3_751_0/}
}
Jonas Bergström; Neil Dummigan; David Farmer; Sally Koutsoliotas. $\protect \mathrm{GL}_2\times \protect \mathrm{GSp}_2$ $L$-values and Hecke eigenvalue congruences. Journal de Théorie des Nombres de Bordeaux, Tome 31 (2019) no. 3, pp. 751-775. doi : 10.5802/jtnb.1108. https://jtnb.centre-mersenne.org/item/JTNB_2019__31_3_751_0/

[1] Tsuneo Arakawa Vector valued Siegel’s modular forms of degree two and the associated Andrianov L-functions, Manuscr. Math., Volume 44 (1983), pp. 155-185 | Article | MR 709851 | Zbl 0517.10024

[2] Jonas Bergström; Neil Dummigan Eisenstein congruences for split reductive groups, Sel. Math., New Ser., Volume 22 (2016) no. 3, pp. 1073-1115 | Article | MR 3518546 | Zbl 1404.11048

[3] Jonas Bergström; Neil Dummigan; Thomas Mégarbané; Tomoyoshi Ibukiyama; Hidenori Katsurada Eisenstein congruences for SO(4,3), SO(4,4), spinor and triple product L-values, Exp. Math., Volume 27 (2018) no. 2, pp. 230-250 | Article | MR 3798196 | Zbl 1416.11066

[4] Jonas Bergström; Carel Faber; Gerard van der Geer Siegel modular forms of degree three and the cohomology of local systems, Sel. Math., New Ser., Volume 20 (2014) no. 1, pp. 83-124 | Article | MR 3147414 | Zbl 1343.11051

[5] Spencer Bloch; Kazuya Kato L-functions and Tamagawa numbers of motives, The Grothendieck Festschrift Volume I (Progress in Mathematics) Volume 86, Birkhäuser, 1990, pp. 333-400 | MR 1086888 | Zbl 0768.14001

[6] Siegfried Böcherer; Neil Dummigan; Rainer Schulze-Pillot Yoshida lifts and Selmer groups, J. Math. Soc. Japan, Volume 64 (2012) no. 4, pp. 1353-1405 | Article | MR 2998926 | Zbl 1276.11069

[7] Siegfried Böcherer; Bernhard Heim L-functions on GSp 2 ×GL 2 of mixed weights, Math. Z., Volume 235 (2000) no. 1, pp. 11-51 | MR 1785070 | Zbl 0967.11017

[8] Wieb Bosma; John Cannon; Catherine Playoust The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | Article | MR 1484478 | Zbl 0898.68039

[9] Gaëtan Chenevier; Jean Lannes Automorphic forms and even unimodular lattices, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, Volume 69, Springer, 2019 | MR 3929692 | Zbl 1430.11001

[10] Gaëtan Chenevier; David Renard Level one algebraic cusp forms of classical groups (website, http://gaetan.chenevier.perso.math.cnrs.fr/levelone.html) | Zbl 1376.11036

[11] Gaëtan Chenevier; David Renard Level one algebraic cusp forms of classical groups of small rank, Memoirs of the American Mathematical Society, Volume 1121, American Mathematical Society, 2015 | Zbl 1376.11036

[12] Laurent Clozel Motifs et formes automorphes: applications du principe de functorialité, Automorphic forms, Shimura varieties and L-functions, Vol. I (Perspectives in Mathematics) Volume 10, Academic Press Inc., 1990, pp. 77-159 | Zbl 0705.11029

[13] Pierre Deligne Formes modulaires et représentations l-adiques, Séminaire Bourbaki 1968/69 (Lecture Notes in Mathematics) Volume 179, Springer, 1969, pp. 139-172 | Article | Zbl 0206.49901

[14] Pierre Deligne Valeurs de Fonctions L et Périodes d’Intégrales, Automorphic forms, representations and L-functions (Proceedings of Symposia in Pure Mathematics) Volume 33, American Mathematical Society, 1979, pp. 313-346 | Article | Zbl 0449.10022

[15] Fred Diamond; Matthias Flach; Li Guo The Tamagawa number conjecture of adjoint motives of modular forms, Ann. Sci. Éc. Norm. Supér., Volume 37 (2004) no. 5, pp. 663-727 | Article | Numdam | MR 2103471 | Zbl 1121.11045

[16] Tim Dokchitser Computing special values of motivic L-functions, Exp. Math., Volume 13 (2004) no. 2, pp. 137-149 | Article | MR 2068888 | Zbl 1139.11317

[17] Neil Dummigan Symmetric square L-functions and Shafarevich-Tate groups, Exp. Math., Volume 10 (2001) no. 3, pp. 383-400 | Article | MR 1917426 | Zbl 1039.11029

[18] Neil Dummigan Symmetric square L-functions and Shafarevich-Tate groups, II, Int. J. Number Theory, Volume 5 (2009) no. 7, pp. 1321-1345 | Article | MR 2584274 | Zbl 1229.11078

[19] Neil Dummigan; Bernhard Heim; Angelo Rendina Kurokawa–Mizumoto congruences and degree-8 L-functions, Manuscr. Math., Volume 160 (2019) no. 1-2, pp. 217-237 | Article | Zbl 07084786

[20] Neil Dummigan; Tomoyoshi Ibukiyama; Hidenori Katsurada Some Siegel modular standard L-values, and Shafarevich-Tate groups, J. Number Theory, Volume 131 (2011) no. 7, pp. 1296-1330 | Article | MR 2782843 | Zbl 1254.11046

[21] Carel Faber; Gerard van der Geer Sur la cohomologie des systèmes locaux sur les espaces de modules des courbes de genre 2 et des surfaces abéliennes, I, C. R. Math. Acad. Sci. Paris, Volume 338 (2004) no. 5, pp. 381-384 | Article | Zbl 1062.14034

[22] Carel Faber; Gerard van der Geer Sur la cohomologie des systèmes locaux sur les espaces de modules des courbes de genre 2 et des surfaces abéliennes, I, C. R. Math. Acad. Sci. Paris, Volume 338 (2004) no. 6, pp. 467-470 | Article | Zbl 1055.14026

[23] David W. Farmer; Nathan C. Ryan Evaluating L-functions with few known coefficients, LMS J. Comput. Math., Volume 17 (2014), pp. 245-258 | Article | MR 3230868 | Zbl 1300.11134

[24] Jean-Marc Fontaine Valeurs spéciales des fonctions L des motifs, Séminaire Bourbaki 1991/92 (Astérisque) Volume 1991, Société Mathématique de France, 1992, pp. 205-249 (Exp. no. 751) | Numdam | MR 1206069 | Zbl 0799.14006

[25] Masaaki Furusawa On L-functions for GSp(4)×GL(2) and their special values, J. Reine Angew. Math., Volume 438 (1993), pp. 187-218 | MR 1215654 | Zbl 0770.11025

[26] Gerard van der Geer Siegel Modular Forms and Their Applications, The 1-2-3 of Modular Forms (Universitext), Springer, 2008, pp. 181-245 | Zbl 1259.11051

[27] Günter Harder A congruence between a Siegel and an elliptic modular form, manuscript, The 1-2-3 of Modular Forms (Universitext), Springer, 2003, pp. 247-262 | Zbl 1259.11049

[28] Bernhard Heim Pullbacks of Eisenstein series, Hecke-Jacobi theory and automorphic L-functions, Automorphic forms, automorphic representations, and arithmetic (Proceedings of Symposia in Pure Mathematics) Volume 66, American Mathematical Society, 1999, pp. 201-238 | Article | MR 1703760 | Zbl 1001.11019

[29] Nobushige Kurokawa Congruences between Siegel modular forms of degree 2, Proc. Japan Acad., Volume 55 (1979), pp. 417-422 | Article | MR 559045 | Zbl 0454.10016

[30] Thomas Mégarbané Calcul des traces d’opérators de Hecke sur les espaces de formes automorphes (website, http://megarban.perso.math.cnrs.fr/) | Zbl 07008742

[31] Thomas Mégarbané Calcul des opérateurs de Hecke sur les classes d’isomorphisme de réseaux pairs de déterminant 2 en dimension 23 et 25, J. Number Theory, Volume 186 (2018), pp. 370-416 | Article | Zbl 07003398

[32] Thomas Mégarbané Traces des opérators de Hecke sur les espaces de formes automorphes de SO 7 , SO 8 ou SO 9 en niveau 1 et poids arbitraire, J. Théor. Nombres Bordeaux, Volume 30 (2018) no. 1, pp. 239-306 | Article | Zbl 07008742

[33] Shin-ichiro Mizumoto Congruences for eigenvalues of Hecke operators on Siegel modular forms of degree two, Math. Ann., Volume 275 (1986), pp. 149-161 | Article | MR 849060 | Zbl 0578.10032

[34] Jan Nekovář Selmer Complexes, Astérisque, Volume 310, Société Mathématique de France, 2006 | Numdam | Zbl 1211.11120

[35] Jan Nekovář Some consequences of a formula of Mazur and Rubin for arithmetic local constants, Algebra Number Theory, Volume 7 (2013) no. 5, pp. 1101-1120 | Article | MR 3101073 | Zbl 1368.11059

[36] Angelo Rendina Congruences of Saito–Kurokawa lifts and divisibility of degree-8 L-values (2019) (Ph. D. Thesis)

[37] Kenneth Ribet A modular construction of unramified p-extensions of (μ p ), Invent. Math., Volume 34 (1976), pp. 151-162 | Article | Zbl 0338.12033

[38] Michael Rubinstein Computational methods and experiments in analytic number theory, Recent perspectives in random matrix theory and number theory (London Mathematical Society Lecture Note Series) Volume 322, Cambridge University Press, 2005, pp. 425-506 | Article | MR 2166470 | Zbl 1168.11329

[39] Takakazu Satoh On certain vector valued Siegel modular forms of degree two, Math. Ann., Volume 274 (1986), pp. 335-352 | Article | MR 838473 | Zbl 0571.10028

[40] Jean-Pierre Serre Facteurs locaux des fonctions zêta des variétés algébriques (définitions et conjectures), Séminaire Delange–Pisot–Poitou 1969/70, Secrétariat Mathématique, 1969 (Exp. no. 19) | Numdam | Zbl 0214.48403

[41] Sug Woo Shin Galois representations arising from some compact Shimura varieties, Ann. Math., Volume 173 (2011) no. 3, pp. 1645-1741 | Article | MR 2800722 | Zbl 1269.11053

[42] Christopher Skinner; Eric Urban Sur les déformations p-adiques de certaines représentations automorphes, J. Inst. Math. Jussieu, Volume 5 (2006) no. 4, pp. 629-698 | Article | Zbl 1169.11314

[43] H. Peter F. Swinnerton-Dyer On l-adic representations and congruences for coefficients of modular forms, Modular functions of one variable. III (Lecture Notes in Mathematics) Volume 350, Springer, 1973, pp. 1-55 | Article | MR 406931 | Zbl 0267.10032

[44] Rainer Weissauer Four dimensional Galois representations (Astérisque) Volume 302, Société Mathématique de France, 2005, pp. 67-150 | Numdam | MR 2234860 | Zbl 1097.11027

[45] Wolfram The Mathematica computer algebra system (http://www.wolfram.com/mathematica/) | Zbl 0925.65002

[46] Hiroyuki Yoshida Motives and Siegel modular forms, Am. J. Math., Volume 123 (2001) no. 6, pp. 1171-1197 | Article | MR 1867315 | Zbl 0998.11022