Soient un nombre premier et une extension normale finie d’un corps de nombres dont le groupe de Galois est simple et non abélien. Le but de cet article est d’estimer la borne inférieure du quotient du -rang du groupe de classes d’idéaux de par le -rang du groupe de -classes ambiges de par rapport à .
Let be a prime and a finite normal extension over a number field whose Galois group is simple and non-abelian. The aim of this paper is to estimate a lower bound of the ratio of the -rank of the ideal class group of to the -rank of the ambiguous -class group of with respect to .
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1101
Mots clés : Class group, simple group
@article{JTNB_2019__31_3_671_0, author = {Yutaka Konomi}, title = {On the $p$-rank of the ideal class group of a normal extension with simple {Galois} group}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {671--678}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {3}, year = {2019}, doi = {10.5802/jtnb.1101}, zbl = {1426.11126}, mrnumber = {4102621}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1101/} }
TY - JOUR AU - Yutaka Konomi TI - On the $p$-rank of the ideal class group of a normal extension with simple Galois group JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 671 EP - 678 VL - 31 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1101/ DO - 10.5802/jtnb.1101 LA - en ID - JTNB_2019__31_3_671_0 ER -
%0 Journal Article %A Yutaka Konomi %T On the $p$-rank of the ideal class group of a normal extension with simple Galois group %J Journal de théorie des nombres de Bordeaux %D 2019 %P 671-678 %V 31 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1101/ %R 10.5802/jtnb.1101 %G en %F JTNB_2019__31_3_671_0
Yutaka Konomi. On the $p$-rank of the ideal class group of a normal extension with simple Galois group. Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 3, pp. 671-678. doi : 10.5802/jtnb.1101. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1101/
[1] Abelian -subgroups of the general linear group, J. Aust. Math. Soc., Volume 11 (1970), pp. 257-259 | DOI | MR | Zbl
[2] On -class group of an -extension, Proc. Japan Acad., Volume 84 (2008) no. 7, pp. 87-88 | DOI | MR | Zbl
[3] The Abelian -subgroups of of maximal rank, Bull. Lond. Math. Soc., Volume 4 (1972), pp. 313-320 | DOI | MR | Zbl
Cité par Sources :