The Bombieri–Vinogradov theorem is one of the standard, basic tools of an analytic number theorist; its applications are many, and not limited to the field. In this paper, we improve on the strongest version to date by Dress–Iwaniec–Tenenbaum [4], getting
Le théorème de Bombieri–Vinogradov est l’un des outils fondamentaux de la théorie analytique de nombres ; ses applications sont nombreuses et ne se limitent pas à ce seul domaine. Dans cet article, nous améliorons la meilleure version actuellement connue du théorème, établie par Dress–Iwaniec–Tenenbaum [4], en remplaçant
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1098
Keywords: primes in arithmetic progressions, large sieve
Alisa Sedunova 1

@article{JTNB_2019__31_3_635_0, author = {Alisa Sedunova}, title = {A logarithmic improvement in the {Bombieri{\textendash}Vinogradov} theorem}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {635--651}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {3}, year = {2019}, doi = {10.5802/jtnb.1098}, zbl = {06984511}, mrnumber = {4102618}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1098/} }
TY - JOUR AU - Alisa Sedunova TI - A logarithmic improvement in the Bombieri–Vinogradov theorem JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 635 EP - 651 VL - 31 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1098/ DO - 10.5802/jtnb.1098 LA - en ID - JTNB_2019__31_3_635_0 ER -
%0 Journal Article %A Alisa Sedunova %T A logarithmic improvement in the Bombieri–Vinogradov theorem %J Journal de théorie des nombres de Bordeaux %D 2019 %P 635-651 %V 31 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1098/ %R 10.5802/jtnb.1098 %G en %F JTNB_2019__31_3_635_0
Alisa Sedunova. A logarithmic improvement in the Bombieri–Vinogradov theorem. Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 3, pp. 635-651. doi : 10.5802/jtnb.1098. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1098/
[1] A variant of the Bombieri–Vinogradov theorem with explicit constants and applications, Math. Comput., Volume 84 (2015) no. 294, pp. 1901-1932 | DOI | MR | Zbl
[2] An extremal problem, Tr. Mosk. Mat. O.-va, Volume 18 (1968), pp. 83-90 | MR | Zbl
[3] An introduction to sieve methods and their applications, London Mathematical Society Student Texts, 66, Cambridge University Press, 2006 | MR | Zbl
[4] Sur une somme liée à la fonction de Möbius, J. Reine Angew. Math., Volume 340 (1983), pp. 53-58 | Zbl
[5] A generalization of the Pólya–Vinogradov inequality, Ramanujan J., Volume 31 (2013) no. 3, pp. 271-279 | DOI | Zbl
[6] An asymptotic estimate related to Selberg’s sieve, J. Number Theory, Volume 10 (1978), pp. 83-94 | DOI | MR | Zbl
[7] The ternary Goldbach problem (2015) (https://arxiv.org/abs/1501.05438, submitted) | Zbl
[8] Über Ideale und Primideale in Idealklassen, Math. Z., Volume 2 (1918) no. 1-2, pp. 52-154 | DOI | Zbl
[9] Primality testing with Gaussian periods, J. Eur. Math. Soc., Volume 21 (2019) no. 4, pp. 1229-1269 | DOI | MR | Zbl
[10] An effective Bombieri–Vinogradov theorem and its applications, Acta Math. Hung. (2017), pp. 230-235 | DOI | MR | Zbl
[11] The analytic principle of the large sieve, Bull. Am. Math. Soc., Volume 84 (1978) no. 4, pp. 547-567 | DOI | MR | Zbl
[12] On the number of primes in an arithmetic progression, Proc. Lond. Math. Soc. (1935), pp. 116-141 | DOI | MR | Zbl
[13] A partial Bombieri–Vinogradov theorem with explicit constants, Publ. Math. Besançon, Algèbre Théorie Nombres, Volume 2018 (2018), pp. 101-110 | DOI | MR | Numdam | Zbl
[14] The Vinogradov–Bombieri theorem, Mat. Zametki, Volume 38 (1985) no. 6, pp. 801-809 | MR | Zbl
[15] The method of trigonometrical sums in the theory of numbers, Dover Publications, 1954, x+180 pages (reprint of the 1954 translation) | Zbl
- Three Arithmetical Exponential Sums, Excursions in Multiplicative Number Theory (2022), p. 259 | DOI:10.1007/978-3-030-73169-4_26
- On a basic mean value theorem with explicit exponents, International Journal of Number Theory, Volume 18 (2022) no. 03, p. 673 | DOI:10.1142/s1793042122500361
Cité par 2 documents. Sources : Crossref