Let
Soit
Accepté le :
Publié le :
Keywords: Congruences between modular forms, Eisentein ideal
Catherine M. Hsu 1

@article{JTNB_2019__31_2_503_0, author = {Catherine M. Hsu}, title = {Higher congruences between newforms and {Eisenstein} series of squarefree level}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {503--525}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {31}, number = {2}, year = {2019}, doi = {10.5802/jtnb.1092}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1092/} }
TY - JOUR AU - Catherine M. Hsu TI - Higher congruences between newforms and Eisenstein series of squarefree level JO - Journal de théorie des nombres de Bordeaux PY - 2019 SP - 503 EP - 525 VL - 31 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1092/ DO - 10.5802/jtnb.1092 LA - en ID - JTNB_2019__31_2_503_0 ER -
%0 Journal Article %A Catherine M. Hsu %T Higher congruences between newforms and Eisenstein series of squarefree level %J Journal de théorie des nombres de Bordeaux %D 2019 %P 503-525 %V 31 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1092/ %R 10.5802/jtnb.1092 %G en %F JTNB_2019__31_2_503_0
Catherine M. Hsu. Higher congruences between newforms and Eisenstein series of squarefree level. Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 2, pp. 503-525. doi : 10.5802/jtnb.1092. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1092/
[1] Modularity of residual Galois extensions and the Eisenstein ideal (to appear in Trans. Am. Math. Soc.) | DOI | Zbl
[2] On deformation rings of residually reducible Galois representations and
[3] On higher congruences between automorphic forms, Math. Res. Lett., Volume 21 (2014) no. 1, pp. 71-82 | DOI | MR | Zbl
[4] The Magma algebra system. I. The user language, J. Symb. Comput., Volume 24 (1997) no. 3-4, pp. 235-265 | DOI | MR | Zbl
[5] On the ramification of Hecke algebras at Eisenstein primes, Invent. Math., Volume 160 (2005) no. 1, pp. 97-144 | DOI | MR | Zbl
[6] On congruences
[7] Fermat’s last theorem, Current developments in mathematics (1995), International Press., 1995, pp. 1-107 | Zbl
[8] Modular forms and modular curves, Seminar on Fermat’s last theorem (Toronto, 1993–1994) (CMS Conference Proceedings), Volume 17, American Mathematical Society, 1993, pp. 1993-1994 | Zbl
[9] Commutative algebra: with a view toward algebraic geometry, Graduate Texts in Mathematics, 150, Springer, 1995 | Zbl
[10] The Jacquet–Langlands correspondence, Eisenstein congruences, and integral
[11] Modular curves and the Eisenstein ideal, Publ. Math., Inst. Hautes Étud. Sci., Volume 47 (1977), pp. 33-186 | DOI | Zbl
[12] Class fields of abelian extensions of
[13] Modular forms, Springer Monographs in Mathematics, Springer, 2006 | MR | Zbl
[14] On higher congruences between cusp forms and Eisenstein series, Computations with modular forms (Heidelberg, 2011) (Contributions in Mathematical and Computational Sciences), Volume 6, Springer, 2014, pp. 257-277 | DOI | MR | Zbl
[15] Eisenstein ideals and the rational torsion subgroups of modular Jacobian varieties II, Tokyo J. Math., Volume 37 (2014) no. 2, pp. 273-318 | DOI | MR | Zbl
[16] Ordinary representations and modular forms, Proc. Natl. Acad. Sci. USA, Volume 94 (1997) no. 20, pp. 10520-10527 | DOI | MR | Zbl
[17] The rank of Mazur’s Eisenstein ideal (2017) (to appear in Duke Math. J.)
[18] The Eisenstein ideal with squarefree level (2018) (https://arxiv.org/abs/1804.06400)
[19] The index of an Eisenstein ideal and multiplicity one, Math. Z., Volume 282 (2016) no. 3-4, pp. 1097-1116 | MR | Zbl
[20] Non-optimal levels of a reducible
Cité par Sources :