Abelian varieties isogenous to a power of an elliptic curve over a Galois extension
Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 1, pp. 205-213.

Soient E/k une courbe elliptique et k ' /k une extension de Galois. On construit un foncteur exact de la catégorie des modules sans torsion sur l’anneau des endomorphismes EndE k ' munis d’une action semi-linéaire de Gal(k ' /k) vers la catégorie des variétés algébriques sur k qui sont k ' -isogènes à une puissance de E. Comme application, on donne une preuve simple du fait que toute courbe elliptique sur k qui est géométriquement à multiplication complexe, est isogène sur k à une courbe elliptique à multiplication complexe par un ordre maximal.

Given an elliptic curve E/k and a Galois extension k ' /k, we construct an exact functor from torsion-free modules over the endomorphism ring EndE k ' with a semilinear Gal(k ' /k) action to abelian varieties over k that are k ' -isogenous to a power of E. As an application, we give a simple proof that every elliptic curve with complex multiplication geometrically is isogenous over the ground field to one with complex multiplication by a maximal order.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1075
Classification : 14K02, 11G10
Mots-clés : abelian varieties, complex multiplication, isogenies

Isabel Vogt 1

1 Department of Mathematics Massachusetts Institute of Technology 77 Massachusetts Avenue Cambridge, MA 02139, USA
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2019__31_1_205_0,
     author = {Isabel Vogt},
     title = {Abelian varieties isogenous to a power of an elliptic curve over a {Galois} extension},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {205--213},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {31},
     number = {1},
     year = {2019},
     doi = {10.5802/jtnb.1075},
     mrnumber = {3994726},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1075/}
}
TY  - JOUR
AU  - Isabel Vogt
TI  - Abelian varieties isogenous to a power of an elliptic curve over a Galois extension
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2019
SP  - 205
EP  - 213
VL  - 31
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1075/
DO  - 10.5802/jtnb.1075
LA  - en
ID  - JTNB_2019__31_1_205_0
ER  - 
%0 Journal Article
%A Isabel Vogt
%T Abelian varieties isogenous to a power of an elliptic curve over a Galois extension
%J Journal de théorie des nombres de Bordeaux
%D 2019
%P 205-213
%V 31
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1075/
%R 10.5802/jtnb.1075
%G en
%F JTNB_2019__31_1_205_0
Isabel Vogt. Abelian varieties isogenous to a power of an elliptic curve over a Galois extension. Journal de théorie des nombres de Bordeaux, Tome 31 (2019) no. 1, pp. 205-213. doi : 10.5802/jtnb.1075. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1075/

[1] David J. Benson Representations and cohomology. I. Basic representation theory of finite groups and associative algebras, Cambridge Studies in Advanced Mathematics, 30, Cambridge University Press, 1998 | Zbl

[2] Abbey Bourdon; Paul Pollack Torsion subgroups of CM elliptic curves over odd degree number fields, Int. Math. Res. Not., Volume 2017 (2017) no. 16, pp. 4923-4961 | MR | Zbl

[3] Pete L. Clark; Brian Cook; James Stankewicz Torsion points on elliptic curves with complex multiplication, Int. J. Number Theory, Volume 9 (2013) no. 2, pp. 447-479 | DOI | Zbl

[4] Bruce W. Jordan; Allan G. Keeton; Bjorn Poonen; Eric M. Rains; Nicholas Shepherd-Barron; John T. Tate Abelian varieties isogenous to a power of an elliptic curve, Compos. Math., Volume 154 (2018) no. 5, pp. 934-959 | DOI | MR | Zbl

[5] Soonhak Kwon Degree of isogenies of elliptic curves with complex multiplication, J. Korean Math. Soc., Volume 36 (1999) no. 5, pp. 945-958 | MR | Zbl

[6] Karl Rubin Elliptic curves with complex multiplication and the conjecture of Birch and Swinnerton–Dyer, Arithmetic theory of elliptic curves (Cetraro, 1997) (Lecture Notes in Mathematics), Volume 1716, Springer, 1997, pp. 167-234 | DOI | Zbl

[7] Isabel Vogt A local-global principle for isogenies of composite degree (2018) (https://arxiv.org/abs/1801.05355)

Cité par Sources :