Biases in prime factorizations and Liouville functions for arithmetic progressions
Peter Humphries; Snehal M. Shekatkar; Tian An Wong
Journal de Théorie des Nombres de Bordeaux, Volume 31 (2019) no. 1, p. 1-25

We introduce a refinement of the classical Liouville function to primes in arithmetic progressions. Using this, we show that the occurrence of primes in the prime factorizations of integers depends on the arithmetic progressions to which the given primes belong. Supported by numerical tests, we are led to consider analogues of Pólya’s conjecture, and prove results related to the sign changes of the associated summatory functions.

Nous introduisons un raffinement de la fonction classique de Liouville pour les nombres premiers en progressions arithmétiques. En utilisant ces fonctions, nous montrons que l’apparition de nombres premiers dans la factorisation des entiers dépend de la progression arithmétique à laquelle ces nombres premiers appartiennent. Encouragés par des explorations numériques, nous sommes amenés à considérer des analogues de la conjecture de Pólya et à prouver des résultats liés aux changements de signe des fonctions de sommation associées.

Received : 2017-12-15
Revised : 2018-08-06
Accepted : 2018-09-25
Published online : 2019-07-29
DOI : https://doi.org/10.5802/jtnb.1066
Classification:  11A51,  11N13,  11N37,  11F66
Keywords: Liouville function, prime factorization, arithmetic progressions, Pólya’s conjecture
@article{JTNB_2019__31_1_1_0,
     author = {Peter Humphries and Snehal M. Shekatkar and Tian An Wong},
     title = {Biases in prime factorizations and Liouville functions for arithmetic progressions},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {31},
     number = {1},
     year = {2019},
     pages = {1-25},
     doi = {10.5802/jtnb.1066},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/item/JTNB_2019__31_1_1_0}
}
Humphries, Peter; Shekatkar, Snehal M.; Wong, Tian An. Biases in prime factorizations and Liouville functions for arithmetic progressions. Journal de Théorie des Nombres de Bordeaux, Volume 31 (2019) no. 1, pp. 1-25. doi : 10.5802/jtnb.1066. jtnb.centre-mersenne.org/item/JTNB_2019__31_1_1_0/

[1] Amir Akbary; Nathan Ng; Majid Shahabi Limiting distributions of the classical error terms of prime number theory, Q. J. Math, Tome 65 (2014) no. 3, pp. 743-780 | Article | MR 3261965

[2] D. G. Best; Timothy S. Trudgian Linear relations of zeroes of the zeta-function, Math. Comput., Tome 84 (2015) no. 294, pp. 2047-2058 | Article | MR 3335903 | Zbl 1377.11096

[3] Peter Borwein; Stephen K. K. Choi; Michael Coons Completely multiplicative functions taking values in {-1,1}, Trans. Am. Math. Soc., Tome 362 (2010) no. 12, pp. 6279-6291 | Article | MR 2678974

[4] Peter Borwein; Ron Ferguson; Michael J. Mossinghoff Sign changes in sums of the Liouville function, Math. Comput., Tome 77 (2008) no. 263, pp. 1681-1694 | Article | MR 2398787

[5] Richard P. Brent; Jan van de Lune A note on Pólya’s observation concerning Liouville’s function, Herman J. J. te Riele Liber Amicorum, CWI, 2010, pp. 92-97 (https://arxiv.org/abs/1112.4911)

[6] M. E. Changa On the sums of multiplicative functions over numbers, all of whose divisors lie in a given arithmetic progression, Izv. Ross. Akad. Nauk, Ser. Mat., Tome 69 (2005) no. 2, pp. 205-220 | Article | MR 2136261 | Zbl 1089.11054

[7] Pál Erdős; Mark Kac The Gaussian law of errors in the theory of additive number theoretic functions, Am. J. Math., Tome 62 (1940), pp. 738-742 | Article | MR 0002374 | Zbl 0024.10203

[8] Colin B. Haselgrove A disproof of a conjecture of Pólya, Mathematika, Tome 5 (1958), pp. 141-145 | Article | MR 0104638 | Zbl 0085.27102

[9] C. P. Hughes; Jonathan P. Keating; Neil O’Connell Random matrix theory and the derivative of the Riemann zeta-function, Proc. R. Soc. Lond., Ser. A, Tome 456 (2000) no. 2003, pp. 2611-2627 | Article | MR 1799857 | Zbl 0996.11052

[10] Peter Humphries The distribution of weighted sums of the Liouville function and Pólya’s conjecture, J. Number Theory, Tome 133 (2013) no. 2, pp. 545-582 | Article | MR 2994374

[11] Albert E. Ingham On two conjectures in the theory of numbers, Am. J. Math., Tome 64 (1942), pp. 313-319 | Article | MR 0006202 | Zbl 0063.02974

[12] Anatoliĭ A. Karatsuba On a property of the set of prime numbers, Usp. Mat. Nauk, Tome 66 (2011) no. 2, pp. 3-14 | Article | MR 2847788

[13] Edmund Landau Über die Anzahl der Gitterpunkte in gewissen Bereichen. IV, Gött. Nachr., Tome 1924 (1924), pp. 137-150 | Zbl 50.0115.01

[14] Alessandro Languasco; Alessandro Zaccagnini On the constant in the Mertens product for arithmetic progressions. II. Numerical values, Math. Comput., Tome 78 (2009) no. 265, pp. 315-326 | Article | MR 2448709

[15] Alessandro Languasco; Alessandro Zaccagnini On the constant in the Mertens product for arithmetic progressions. I. Identities, Funct. Approximatio, Comment. Math., Tome 42 (2010) no. 1, pp. 17-27 | Article | MR 2640766 | Zbl 1206.11112

[16] Kaisa Matomäki; Maksym Radziwiłł Multiplicative functions in short intervals, Ann. Math., Tome 183 (2016) no. 3, pp. 1015-1056 | Article | MR 3488742

[17] Xianchang Meng The distribution of k-free numbers and the derivative of the Riemann zeta-function, Math. Proc. Camb. Philos. Soc., Tome 162 (2017) no. 2, pp. 293-317 | Article | MR 3604916

[18] Xianchang Meng Large bias for integers with prime factors in arithmetic progressions, Mathematika, Tome 64 (2018) no. 1, pp. 237-252 | Article | MR 3778223

[19] Hugh L. Montgomery; Robert C. Vaughan Multiplicative number theory. I. Classical theory, Cambridge Studies in Advanced Mathematics, Tome 97, Cambridge University Press, 2007, xviii+552 pages | MR 2378655

[20] George Pólya Verschiedene bemerkungen zur zahlentheorie., Deutsche Math.-Ver., Tome 28 (1919), pp. 31-40 | Zbl 47.0882.06