A famous conjecture of Chowla states that the Liouville function
Une conjecture bien connue de Chowla affirme que les corrélations des translatés de la fonction
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1062
Keywords: Liouville function, Chowla’s conjecture, Gowers uniformity norms
Terence Tao 1 ; Joni Teräväinen 2

@article{JTNB_2018__30_3_997_0, author = {Terence Tao and Joni Ter\"av\"ainen}, title = {Odd order cases of the logarithmically averaged {Chowla} conjecture}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {997--1015}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {3}, year = {2018}, doi = {10.5802/jtnb.1062}, zbl = {1441.11255}, mrnumber = {3938639}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1062/} }
TY - JOUR AU - Terence Tao AU - Joni Teräväinen TI - Odd order cases of the logarithmically averaged Chowla conjecture JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 997 EP - 1015 VL - 30 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1062/ DO - 10.5802/jtnb.1062 LA - en ID - JTNB_2018__30_3_997_0 ER -
%0 Journal Article %A Terence Tao %A Joni Teräväinen %T Odd order cases of the logarithmically averaged Chowla conjecture %J Journal de théorie des nombres de Bordeaux %D 2018 %P 997-1015 %V 30 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1062/ %R 10.5802/jtnb.1062 %G en %F JTNB_2018__30_3_997_0
Terence Tao; Joni Teräväinen. Odd order cases of the logarithmically averaged Chowla conjecture. Journal de théorie des nombres de Bordeaux, Tome 30 (2018) no. 3, pp. 997-1015. doi : 10.5802/jtnb.1062. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1062/
[1] Disjointness of Moebius from horocycle flows, From Fourier analysis and number theory to Radon transforms and geometry (Developments in Mathematics), Volume 28, Springer, 2013, pp. 67-83 | DOI | MR | Zbl
[2] The Riemann hypothesis and Hilbert’s tenth problem, Mathematics and its Applications, 4, Gordon and Breach Science Publishers, 1965 | MR | Zbl
[3] On the correlation of multiplicative functions, Notas Soc. Mat. Chile, Volume 11 (1992) no. 1, pp. 1-11 | MR | Zbl
[4] Ergodicity of the Liouville system implies the Chowla conjecture, Discrete Anal., Volume 2017 (2017), 19, 41 pages (Art. ID 19, 41 pages) | MR | Zbl
[5] An averaged Chowla and Elliott conjecture along independent polynomials, Int. Math. Res. Not., Volume 2018 (2018) no. 12, pp. 3721-3743 | MR | Zbl
[6] The logarithmic Sarnak conjecture for ergodic weights, Ann. Math., Volume 187 (2018) no. 3, pp. 869-931 | DOI | MR | Zbl
[7] Multiple recurrence and convergence for sequences related to the prime numbers, J. Reine Angew. Math., Volume 611 (2007), pp. 131-144 | MR | Zbl
[8] Opera de cribro, Colloquium Publications, 57, American Mathematical Society, 2010 | MR | Zbl
[9] An inverse theorem for the Gowers
[10] Linear equations in primes, Ann. Math., Volume 171 (2010), pp. 1753-1850 | DOI | MR | Zbl
[11] The Möbius function is strongly orthogonal to nilsequences, Ann. Math., Volume 175 (2012) no. 2, pp. 541-566 | DOI | Zbl
[12] An inverse theorem for the Gowers
[13] Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes, Acta Math., Volume 44 (1923) no. 1, pp. 1-70 | DOI | MR | Zbl
[14] Probability inequalities for sums of bounded random variables, J. Am. Stat. Assoc., Volume 58 (1963), pp. 13-30 | DOI | MR | Zbl
[15] A remark on a theorem of H. Daboussi, Acta Math. Hung., Volume 47 (1986), pp. 223-225 | DOI | MR | Zbl
[16] Nilsequences and multiple correlations along subsequences (2017) (https://arxiv.org/abs/1708.01361) | Zbl
[17] Nilsequences, null-sequences, and multiple correlation sequences, Ergodic Theory Dyn. Syst., Volume 35 (2015) no. 1, pp. 176-191 (corrected version available at people.math.osu.edu/leibman.1/preprints/msqx.pdf) | DOI | MR | Zbl
[18] Multiplicative functions in short intervals, Ann. Math., Volume 183 (2016) no. 3, pp. 1015-1056 | DOI | MR | Zbl
[19] An averaged form of Chowla’s conjecture, Algebra & Number Theory, Volume 9 (2015), pp. 2167-2196 | DOI | MR | Zbl
[20] The logarithmically averaged Chowla and Elliott conjectures for two-point correlations, Forum Math. Pi, Volume 4 (2016), 8, 36 pages (Art. ID e8, 36 pages) | MR | Zbl
[21] Equivalence of the logarithmically averaged Chowla and Sarnak conjectures, Number theory—Diophantine problems, uniform distribution and applications, Springer, 2017, pp. 391-421 | Zbl
[22] The structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliott conjectures (2017) (to appear in Duke Math. J., https://arxiv.org/abs/1708.02610) | Zbl
[23] Additive combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, 2006 | MR | Zbl
- Higher Moments for Polynomial Chowla, International Mathematics Research Notices, Volume 2025 (2025) no. 8 | DOI:10.1093/imrn/rnaf097
- Quantitative bounds for Gowers uniformity of the Möbius and von Mangoldt functions, Journal of the European Mathematical Society (JEMS), Volume 27 (2025) no. 4, pp. 1321-1384 | DOI:10.4171/jems/1404 | Zbl:8012224
- The Chowla conjecture and Landau-Siegel zeroes, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 179 (2025) no. 1, pp. 167-187 | DOI:10.1017/s0305004125000271 | Zbl:8054102
- Random Chowla’s conjecture for Rademacher multiplicative functions, Transactions of the American Mathematical Society (2025) | DOI:10.1090/tran/9457
- On the multiplicative independence between
and , Acta Arithmetica, Volume 213 (2024) no. 3, pp. 193-226 | DOI:10.4064/aa230115-18-2 | Zbl:1548.11129 - On the Liouville function at polynomial arguments, American Journal of Mathematics, Volume 146 (2024) no. 4, pp. 1115-1167 | Zbl:1557.11122
- Polynomial mean complexity and logarithmic Sarnak conjecture, Ergodic Theory and Dynamical Systems, Volume 44 (2024) no. 3, pp. 769-798 | DOI:10.1017/etds.2023.22 | Zbl:1536.37005
- Higher uniformity of bounded multiplicative functions in short intervals on average, Annals of Mathematics. Second Series, Volume 197 (2023) no. 2, pp. 739-857 | DOI:10.4007/annals.2023.197.2.3 | Zbl:1521.11059
- Sequence complexity, rigidity and logarithmic Sarnak conjecture, Discrete and Continuous Dynamical Systems, Volume 43 (2023) no. 5, pp. 1959-1974 | DOI:10.3934/dcds.2022187 | Zbl:1519.37011
- Sarnak’s Conjecture from the Ergodic Theory Point of View, Ergodic Theory (2023), p. 293 | DOI:10.1007/978-1-0716-2388-6_735
- On the random Chowla conjecture, Geometric and Functional Analysis. GAFA, Volume 33 (2023) no. 3, pp. 749-777 | DOI:10.1007/s00039-023-00641-y | Zbl:1534.11100
- Three conjectures about character sums, Mathematische Zeitschrift, Volume 305 (2023) no. 3, p. 34 (Id/No 49) | DOI:10.1007/s00209-023-03374-8 | Zbl:1533.11150
- Dynamical generalizations of the prime number theorem and disjointness of additive and multiplicative semigroup actions, Duke Mathematical Journal, Volume 171 (2022) no. 15, pp. 3133-3200 | DOI:10.1215/00127094-2022-0055 | Zbl:1514.37018
- On the Hardy-Littlewood-Chowla conjecture on average, Forum of Mathematics, Sigma, Volume 10 (2022), p. 17 (Id/No e57) | DOI:10.1017/fms.2022.54 | Zbl:1501.11094
- The Hardy-Littlewood-Chowla conjecture in the presence of a Siegel zero, Journal of the London Mathematical Society. Second Series, Volume 106 (2022) no. 4, pp. 3317-3378 | DOI:10.1112/jlms.12663 | Zbl:8027259
- (Logarithmic) densities for automatic sequences along primes and squares, Transactions of the American Mathematical Society, Volume 375 (2022) no. 1, pp. 455-499 | DOI:10.1090/tran/8476 | Zbl:1497.11062
- Sarnak's conjecture for sequences of almost quadratic word growth, Ergodic Theory and Dynamical Systems, Volume 41 (2021) no. 10, pp. 3060-3115 | DOI:10.1017/etds.2020.94 | Zbl:1480.37014
- On Furstenberg systems of aperiodic multiplicative functions of Matomäki, Radziwiłł, and Tao, Journal of Modern Dynamics, Volume 17 (2021), pp. 529-555 | DOI:10.3934/jmd.2021018 | Zbl:1490.11094
- Gowers norms control diophantine inequalities, Algebra Number Theory, Volume 14 (2020) no. 6, pp. 1457-1536 | DOI:10.2140/ant.2020.14.1457 | Zbl:1478.11052
- On consecutive values of random completely multiplicative functions, Electronic Journal of Probability, Volume 25 (2020), p. 28 (Id/No 59) | DOI:10.1214/20-ejp456 | Zbl:1470.11214
- Sarnak’s Conjecture from the Ergodic Theory Point of View, Encyclopedia of Complexity and Systems Science (2020), p. 1 | DOI:10.1007/978-3-642-27737-5_735-1
- Multiplicative functions in short intervals, with applications, European Mathematical Society Newsletter, Volume 118 (2020), pp. 39-44 | DOI:10.4171/news/118/9 | Zbl:1482.11130
- Fourier uniformity of bounded multiplicative functions in short intervals on average, Inventiones Mathematicae, Volume 220 (2020) no. 1, pp. 1-58 | DOI:10.1007/s00222-019-00926-w | Zbl:1459.11186
- Correlations of multiplicative functions along deterministic and independent sequences, Transactions of the American Mathematical Society, Volume 373 (2020) no. 9, pp. 6595-6620 | DOI:10.1090/tran/8142 | Zbl:1461.11127
- The structure of correlations of multiplicative functions at almost all scales, with applications to the Chowla and Elliott conjectures, Algebra Number Theory, Volume 13 (2019) no. 9, pp. 2103-2150 | DOI:10.2140/ant.2019.13.2103 | Zbl:1476.11127
- The structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliott conjectures, Duke Mathematical Journal, Volume 168 (2019) no. 11, pp. 1977-2027 | DOI:10.1215/00127094-2019-0002 | Zbl:1436.11115
- Value patterns of multiplicative functions and related sequences, Forum of Mathematics, Sigma, Volume 7 (2019), p. 55 (Id/No e33) | DOI:10.1017/fms.2019.28 | Zbl:1433.11112
- On binary correlations of multiplicative functions, Forum of Mathematics, Sigma, Volume 6 (2018), p. 41 (Id/No e10) | DOI:10.1017/fms.2018.10 | Zbl:1469.11385
Cité par 28 documents. Sources : Crossref, zbMATH