Odd order cases of the logarithmically averaged Chowla conjecture
Journal de théorie des nombres de Bordeaux, Tome 30 (2018) no. 3, pp. 997-1015.

A famous conjecture of Chowla states that the Liouville function λ(n) has negligible correlations with its shifts. Recently, the authors established a weak form of the logarithmically averaged Elliott conjecture on correlations of multiplicative functions, which in turn implied all the odd order cases of the logarithmically averaged Chowla conjecture. In this note, we give a new proof of the odd order cases of the logarithmically averaged Chowla conjecture. In particular, this proof avoids all mention of ergodic theory, which had an important role in the previous proof.

Une conjecture bien connue de Chowla affirme que les corrélations des translatés de la fonction λ(n) de Liouville sont asymptotiquement nulles. Dans un article récent, les auteurs ont démontré un résultat partiel en direction de la conjecture d’Elliott logarithmiquement pondérée concernant les corrélations des fonctions multiplicatives, qui à son tour implique tous les cas de la conjecture de Chowla avec un nombre impair de translatés. Dans cet article, nous donnons une nouvelle démonstration de ce dernier résultat sur la conjecture de Chowla. En particulier, celle-ci évite l’usage de la théorie ergodique qui joue un rôle crucial dans notre démonstration précédente.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1062
Classification : 11N37
Keywords: Liouville function, Chowla’s conjecture, Gowers uniformity norms

Terence Tao 1 ; Joni Teräväinen 2

1 Department of Mathematics, UCLA 405 Hilgard Ave Los Angeles CA 90095, USA
2 Department of Mathematics and Statistics University of Turku 20014 Turku, Finland
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2018__30_3_997_0,
     author = {Terence Tao and Joni Ter\"av\"ainen},
     title = {Odd order cases of the logarithmically averaged {Chowla} conjecture},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {997--1015},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {30},
     number = {3},
     year = {2018},
     doi = {10.5802/jtnb.1062},
     zbl = {1441.11255},
     mrnumber = {3938639},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1062/}
}
TY  - JOUR
AU  - Terence Tao
AU  - Joni Teräväinen
TI  - Odd order cases of the logarithmically averaged Chowla conjecture
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2018
SP  - 997
EP  - 1015
VL  - 30
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1062/
DO  - 10.5802/jtnb.1062
LA  - en
ID  - JTNB_2018__30_3_997_0
ER  - 
%0 Journal Article
%A Terence Tao
%A Joni Teräväinen
%T Odd order cases of the logarithmically averaged Chowla conjecture
%J Journal de théorie des nombres de Bordeaux
%D 2018
%P 997-1015
%V 30
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1062/
%R 10.5802/jtnb.1062
%G en
%F JTNB_2018__30_3_997_0
Terence Tao; Joni Teräväinen. Odd order cases of the logarithmically averaged Chowla conjecture. Journal de théorie des nombres de Bordeaux, Tome 30 (2018) no. 3, pp. 997-1015. doi : 10.5802/jtnb.1062. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1062/

[1] Jean Bourgain; Peter Sarnak; Tamar Ziegler Disjointness of Moebius from horocycle flows, From Fourier analysis and number theory to Radon transforms and geometry (Developments in Mathematics), Volume 28, Springer, 2013, pp. 67-83 | DOI | MR | Zbl

[2] Sarvadaman Chowla The Riemann hypothesis and Hilbert’s tenth problem, Mathematics and its Applications, 4, Gordon and Breach Science Publishers, 1965 | MR | Zbl

[3] Peter D. T. A. Elliott On the correlation of multiplicative functions, Notas Soc. Mat. Chile, Volume 11 (1992) no. 1, pp. 1-11 | MR | Zbl

[4] Nikos Frantzikinakis Ergodicity of the Liouville system implies the Chowla conjecture, Discrete Anal., Volume 2017 (2017), 19, 41 pages (Art. ID 19, 41 pages) | MR | Zbl

[5] Nikos Frantzikinakis An averaged Chowla and Elliott conjecture along independent polynomials, Int. Math. Res. Not., Volume 2018 (2018) no. 12, pp. 3721-3743 | MR | Zbl

[6] Nikos Frantzikinakis; Bernard Host The logarithmic Sarnak conjecture for ergodic weights, Ann. Math., Volume 187 (2018) no. 3, pp. 869-931 | DOI | MR | Zbl

[7] Nikos Frantzikinakis; Bernard Host; Bryna Kra Multiple recurrence and convergence for sequences related to the prime numbers, J. Reine Angew. Math., Volume 611 (2007), pp. 131-144 | MR | Zbl

[8] John Friedlander; Henryk Iwaniec Opera de cribro, Colloquium Publications, 57, American Mathematical Society, 2010 | MR | Zbl

[9] Ben Green; Terence Tao An inverse theorem for the Gowers U3-norm, with applications, Proc. Edinb. Math. Soc., Volume 51 (2008) no. 1, pp. 73-153 | DOI | Zbl

[10] Ben Green; Terence Tao Linear equations in primes, Ann. Math., Volume 171 (2010), pp. 1753-1850 | DOI | MR | Zbl

[11] Ben Green; Terence Tao The Möbius function is strongly orthogonal to nilsequences, Ann. Math., Volume 175 (2012) no. 2, pp. 541-566 | DOI | Zbl

[12] Ben Green; Terence Tao; Tamar Ziegler An inverse theorem for the Gowers Us+1[N]-norm, Ann. Math., Volume 176 (2012) no. 2, pp. 1231-1372 | DOI | MR | Zbl

[13] Godfrey H. Hardy; John E. Littlewood Some problems of ‘Partitio numerorum’; III: On the expression of a number as a sum of primes, Acta Math., Volume 44 (1923) no. 1, pp. 1-70 | DOI | MR | Zbl

[14] Wassily Hoeffding Probability inequalities for sums of bounded random variables, J. Am. Stat. Assoc., Volume 58 (1963), pp. 13-30 | DOI | MR | Zbl

[15] Imre Kátai A remark on a theorem of H. Daboussi, Acta Math. Hung., Volume 47 (1986), pp. 223-225 | DOI | MR | Zbl

[16] Anh Ngoc Le Nilsequences and multiple correlations along subsequences (2017) (https://arxiv.org/abs/1708.01361) | Zbl

[17] Alexander Leibman Nilsequences, null-sequences, and multiple correlation sequences, Ergodic Theory Dyn. Syst., Volume 35 (2015) no. 1, pp. 176-191 (corrected version available at people.math.osu.edu/leibman.1/preprints/msqx.pdf) | DOI | MR | Zbl

[18] Kaisa Matomäki; Maksym Radziwiłł Multiplicative functions in short intervals, Ann. Math., Volume 183 (2016) no. 3, pp. 1015-1056 | DOI | MR | Zbl

[19] Kaisa Matomäki; Maksym Radziwiłł; Terence Tao An averaged form of Chowla’s conjecture, Algebra & Number Theory, Volume 9 (2015), pp. 2167-2196 | DOI | MR | Zbl

[20] Terence Tao The logarithmically averaged Chowla and Elliott conjectures for two-point correlations, Forum Math. Pi, Volume 4 (2016), 8, 36 pages (Art. ID e8, 36 pages) | MR | Zbl

[21] Terence Tao Equivalence of the logarithmically averaged Chowla and Sarnak conjectures, Number theory—Diophantine problems, uniform distribution and applications, Springer, 2017, pp. 391-421 | Zbl

[22] Terence Tao; Joni Teräväinen The structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliott conjectures (2017) (to appear in Duke Math. J., https://arxiv.org/abs/1708.02610) | Zbl

[23] Terence Tao; Van H. Vu Additive combinatorics, Cambridge Studies in Advanced Mathematics, 105, Cambridge University Press, 2006 | MR | Zbl

  • Cameron Wilson Higher Moments for Polynomial Chowla, International Mathematics Research Notices, Volume 2025 (2025) no. 8 | DOI:10.1093/imrn/rnaf097
  • Terence Tao; Joni Teräväinen Quantitative bounds for Gowers uniformity of the Möbius and von Mangoldt functions, Journal of the European Mathematical Society (JEMS), Volume 27 (2025) no. 4, pp. 1321-1384 | DOI:10.4171/jems/1404 | Zbl:8012224
  • Mikko Jaskari; Stelios Sachpazis The Chowla conjecture and Landau-Siegel zeroes, Mathematical Proceedings of the Cambridge Philosophical Society, Volume 179 (2025) no. 1, pp. 167-187 | DOI:10.1017/s0305004125000271 | Zbl:8054102
  • Jake Chinis; Besfort Shala Random Chowla’s conjecture for Rademacher multiplicative functions, Transactions of the American Mathematical Society (2025) | DOI:10.1090/tran/9457
  • David Crnčević; Felipe Hernández; Kevin Rizk; Khunpob Sereesuchart; Ran Tao On the multiplicative independence between n and αn, Acta Arithmetica, Volume 213 (2024) no. 3, pp. 193-226 | DOI:10.4064/aa230115-18-2 | Zbl:1548.11129
  • Joni Teräväinen On the Liouville function at polynomial arguments, American Journal of Mathematics, Volume 146 (2024) no. 4, pp. 1115-1167 | Zbl:1557.11122
  • Wen Huang; Leiye Xu; Xiangdong Ye Polynomial mean complexity and logarithmic Sarnak conjecture, Ergodic Theory and Dynamical Systems, Volume 44 (2024) no. 3, pp. 769-798 | DOI:10.1017/etds.2023.22 | Zbl:1536.37005
  • Kaisa Matomäki; Maksym Radziwiłł; Terence Tao; Joni Teräväinen; Tamar Ziegler Higher uniformity of bounded multiplicative functions in short intervals on average, Annals of Mathematics. Second Series, Volume 197 (2023) no. 2, pp. 739-857 | DOI:10.4007/annals.2023.197.2.3 | Zbl:1521.11059
  • Rui Qiu; Runju Wei; Leiye Xu Sequence complexity, rigidity and logarithmic Sarnak conjecture, Discrete and Continuous Dynamical Systems, Volume 43 (2023) no. 5, pp. 1959-1974 | DOI:10.3934/dcds.2022187 | Zbl:1519.37011
  • Joanna Kułaga-Przymus; Mariusz Lemańczyk Sarnak’s Conjecture from the Ergodic Theory Point of View, Ergodic Theory (2023), p. 293 | DOI:10.1007/978-1-0716-2388-6_735
  • Oleksiy Klurman; Ilya D. Shkredov; Max Wenqiang Xu On the random Chowla conjecture, Geometric and Functional Analysis. GAFA, Volume 33 (2023) no. 3, pp. 749-777 | DOI:10.1007/s00039-023-00641-y | Zbl:1534.11100
  • Andrew Granville; Alexander P. Mangerel Three conjectures about character sums, Mathematische Zeitschrift, Volume 305 (2023) no. 3, p. 34 (Id/No 49) | DOI:10.1007/s00209-023-03374-8 | Zbl:1533.11150
  • Vitaly Bergelson; Florian K. Richter Dynamical generalizations of the prime number theorem and disjointness of additive and multiplicative semigroup actions, Duke Mathematical Journal, Volume 171 (2022) no. 15, pp. 3133-3200 | DOI:10.1215/00127094-2022-0055 | Zbl:1514.37018
  • Jared Duker Lichtman; Joni Teräväinen On the Hardy-Littlewood-Chowla conjecture on average, Forum of Mathematics, Sigma, Volume 10 (2022), p. 17 (Id/No e57) | DOI:10.1017/fms.2022.54 | Zbl:1501.11094
  • Terence Tao; Joni Teräväinen The Hardy-Littlewood-Chowla conjecture in the presence of a Siegel zero, Journal of the London Mathematical Society. Second Series, Volume 106 (2022) no. 4, pp. 3317-3378 | DOI:10.1112/jlms.12663 | Zbl:8027259
  • Boris Adamczewski; Michael Drmota; Clemens Müllner (Logarithmic) densities for automatic sequences along primes and squares, Transactions of the American Mathematical Society, Volume 375 (2022) no. 1, pp. 455-499 | DOI:10.1090/tran/8476 | Zbl:1497.11062
  • Redmond McNamara Sarnak's conjecture for sequences of almost quadratic word growth, Ergodic Theory and Dynamical Systems, Volume 41 (2021) no. 10, pp. 3060-3115 | DOI:10.1017/etds.2020.94 | Zbl:1480.37014
  • Alexander Gomilko; Mariusz Lemańczyk; Thierry de la Rue On Furstenberg systems of aperiodic multiplicative functions of Matomäki, Radziwiłł, and Tao, Journal of Modern Dynamics, Volume 17 (2021), pp. 529-555 | DOI:10.3934/jmd.2021018 | Zbl:1490.11094
  • Aled Walker Gowers norms control diophantine inequalities, Algebra Number Theory, Volume 14 (2020) no. 6, pp. 1457-1536 | DOI:10.2140/ant.2020.14.1457 | Zbl:1478.11052
  • Joseph Najnudel On consecutive values of random completely multiplicative functions, Electronic Journal of Probability, Volume 25 (2020), p. 28 (Id/No 59) | DOI:10.1214/20-ejp456 | Zbl:1470.11214
  • Joanna Kułaga-Przymus; Mariusz Lemańczyk Sarnak’s Conjecture from the Ergodic Theory Point of View, Encyclopedia of Complexity and Systems Science (2020), p. 1 | DOI:10.1007/978-3-642-27737-5_735-1
  • Kaisa Matomäki Multiplicative functions in short intervals, with applications, European Mathematical Society Newsletter, Volume 118 (2020), pp. 39-44 | DOI:10.4171/news/118/9 | Zbl:1482.11130
  • Kaisa Matomäki; Maksym Radziwiłł; Terence Tao Fourier uniformity of bounded multiplicative functions in short intervals on average, Inventiones Mathematicae, Volume 220 (2020) no. 1, pp. 1-58 | DOI:10.1007/s00222-019-00926-w | Zbl:1459.11186
  • Nikos Frantzikinakis Correlations of multiplicative functions along deterministic and independent sequences, Transactions of the American Mathematical Society, Volume 373 (2020) no. 9, pp. 6595-6620 | DOI:10.1090/tran/8142 | Zbl:1461.11127
  • Terence Tao; Joni Teräväinen The structure of correlations of multiplicative functions at almost all scales, with applications to the Chowla and Elliott conjectures, Algebra Number Theory, Volume 13 (2019) no. 9, pp. 2103-2150 | DOI:10.2140/ant.2019.13.2103 | Zbl:1476.11127
  • Terence Tao; Joni Teräväinen The structure of logarithmically averaged correlations of multiplicative functions, with applications to the Chowla and Elliott conjectures, Duke Mathematical Journal, Volume 168 (2019) no. 11, pp. 1977-2027 | DOI:10.1215/00127094-2019-0002 | Zbl:1436.11115
  • Terence Tao; Joni Teräväinen Value patterns of multiplicative functions and related sequences, Forum of Mathematics, Sigma, Volume 7 (2019), p. 55 (Id/No e33) | DOI:10.1017/fms.2019.28 | Zbl:1433.11112
  • Joni Teräväinen On binary correlations of multiplicative functions, Forum of Mathematics, Sigma, Volume 6 (2018), p. 41 (Id/No e10) | DOI:10.1017/fms.2018.10 | Zbl:1469.11385

Cité par 28 documents. Sources : Crossref, zbMATH