We prove a variational open adelic image theorem for the Galois action on the cohomology of smooth proper
Nous démontrons un théorème de l’image adélique ouverte variationnel pour l’action du groupe de Galois sur la cohomologie d’un
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1059
Keywords: Compatible system, adelic openness, positive characteristic
Gebhard Böckle 1 ; Wojciech Gajda 2 ; Sebastian Petersen 3

@article{JTNB_2018__30_3_965_0, author = {Gebhard B\"ockle and Wojciech Gajda and Sebastian Petersen}, title = {A variational open image theorem in positive characteristic}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {965--977}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {3}, year = {2018}, doi = {10.5802/jtnb.1059}, zbl = {07081582}, mrnumber = {3938636}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1059/} }
TY - JOUR AU - Gebhard Böckle AU - Wojciech Gajda AU - Sebastian Petersen TI - A variational open image theorem in positive characteristic JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 965 EP - 977 VL - 30 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1059/ DO - 10.5802/jtnb.1059 LA - en ID - JTNB_2018__30_3_965_0 ER -
%0 Journal Article %A Gebhard Böckle %A Wojciech Gajda %A Sebastian Petersen %T A variational open image theorem in positive characteristic %J Journal de théorie des nombres de Bordeaux %D 2018 %P 965-977 %V 30 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1059/ %R 10.5802/jtnb.1059 %G en %F JTNB_2018__30_3_965_0
Gebhard Böckle; Wojciech Gajda; Sebastian Petersen. A variational open image theorem in positive characteristic. Journal de théorie des nombres de Bordeaux, Tome 30 (2018) no. 3, pp. 965-977. doi : 10.5802/jtnb.1059. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1059/
[1] Altération de variétés algébriques, Séminaire Bourbaki. Volume 1995/96 (Astérisque), Volume 241, Société Mathématique de France, 1997, pp. 273-311 | MR | Zbl
[2] Independence of
[3] An open adelic image theorem for motivic representations over function fields (to appear in Math. Res. Lett., https://webusers.imj-prg.fr/~anna.cadoret/Cadoret_MRL.pdf) | DOI | Zbl
[4] An open adelic image theorem for abelian schemes, Int. Math. Res. Not., Volume 2015 (2015) no. 20, pp. 10208-10242 | DOI | MR | Zbl
[5] Geometric monodromy - semisimplicity and maximality, Ann. Math., Volume 186 (2017) no. 1, pp. 205-236 | DOI | MR | Zbl
[6] Galois generic points on Shimura varieties, Algebra Number Theory, Volume 10 (2016) no. 9, pp. 1893-1934 | DOI | MR | Zbl
[7] On the geometric image of
[8] La conjecture de Weil I, Publ. Math., Inst. Hautes Étud. Sci., Volume 43 (1974), pp. 273-307 | DOI | Numdam | Zbl
[9] La conjecture de Weil II, Publ. Math., Inst. Hautes Étud. Sci., Volume 52 (1980), pp. 137-252 | DOI | Numdam | Zbl
[10] Analytic pro-
[11] On a conjecture of Deligne, Mosc. Math. J., Volume 12 (2012) no. 3, pp. 515-542 | DOI | MR | Zbl
[12] Adelic openness without the Mumford–Tate conjecture (2013) (https://arxiv.org/abs/1312.3812)
[13] On different notions of tameness in arithmetic geometry, Math. Ann., Volume 346 (2010) no. 3, pp. 641-668 | DOI | MR | Zbl
[14] On
[15] Abelian varieties,
[16] Algebraic Groups – The theory of group schemes of finite type over a field (Lecture notes available at www.jmilne.org)
[17] Étale Cohomology, Princeton Mathematical Series, 33, Princeton University Press, 1980, xiii+323 pages | MR | Zbl
[18] A Combination of the conjectures of Mordell-Lang and André-Oort, Math. Ann., Volume 302 (1995) no. 3, pp. 561-579 | Zbl
[19] Sur les groupes de Galois attachés aux groups
[20] Lectures on the Mordell-Weil theorem, Aspects of Mathematics, E15, Viehweg, 1989 | Zbl
[21] Lettre à Ken Ribet du 1/1/1981 et du 29/1/1981, Collected papers. Vol. IV: 1985–1998, Springer, 2000
- On the semisimplicity of reductions and adelic openness for
-rational compatible systems over global function fields, Transactions of the American Mathematical Society, Volume 372 (2019) no. 8, pp. 5621-5691 | DOI:10.1090/tran/7788 | Zbl:1471.11176
Cité par 1 document. Sources : zbMATH