On the genera of semisimple groups defined over an integral domain of a global function field
Journal de théorie des nombres de Bordeaux, Tome 30 (2018) no. 3, pp. 1037-1057.

Let K=𝔽q(C) be the global function field of rational functions over a smooth and projective curve C defined over a finite field 𝔽q. The ring of regular functions on C-S where S is any finite set of closed points on C is a Dedekind domain 𝒪S of K. For a semisimple 𝒪S-group G̲ with a smooth fundamental group F̲, we aim to describe both the set of genera of G̲ and its principal genus (the latter if G̲𝒪SK is isotropic at S) in terms of abelian groups depending on 𝒪S and F̲ only. This leads to a necessary and sufficient condition for the Hasse local-global principle to hold for certain G̲. We also use it to express the Tamagawa number τ(G) of a semisimple K-group G by the Euler–Poincaré invariant. This facilitates the computation of τ(G) for twisted K-groups.

Soit K=𝔽q(C) un corps de fonctions global, i.e. le corps des fonctions d’une courbe projective lisse C définie sur un corps fini 𝔽q. L’anneau des fonctions régulières sur C-S, où S est un ensemble fini de points fermés sur C, est un domaine de Dedekind 𝒪S de K. Étant donné un 𝒪S-groupe G̲ semisimple dont le groupe fondamental F̲ est lisse, on aimerait décrire l’ensemble des genres de G̲ et encore (dans le cas où le groupe G̲𝒪SK est isotrope à S) son genre principal en termes des groupes abéliens ne dépendant que de 𝒪S et de F̲. Ceci conduit à une condition nécessaire et suffisante pour que le principe local-global de Hasse soit valable pour certains groupes G̲. Nous l’utilisons aussi pour exprimer le nombre de Tamagawa τ(G) d’un K-groupe semisimple G̲ par l’invariant d’Euler–Poincaré et faciliter le calcul de τ(G) pour les K-groupes tordus.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1064
Classification : 11G20, 11G45, 11R29
Keywords: Class number, Hasse principle, Tamagawa number

Rony A. Bitan 1, 2

1 Afeka, Tel-Aviv Academic College of Engineering Tel-Aviv, Israel
2 Bar-Ilan University Ramat-Gan, Israel
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2018__30_3_1037_0,
     author = {Rony A. Bitan},
     title = {On the genera of semisimple groups defined over an integral domain of a global function field},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {1037--1057},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {30},
     number = {3},
     year = {2018},
     doi = {10.5802/jtnb.1064},
     zbl = {1441.11289},
     mrnumber = {3938641},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1064/}
}
TY  - JOUR
AU  - Rony A. Bitan
TI  - On the genera of semisimple groups defined over an integral domain of a global function field
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2018
SP  - 1037
EP  - 1057
VL  - 30
IS  - 3
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1064/
DO  - 10.5802/jtnb.1064
LA  - en
ID  - JTNB_2018__30_3_1037_0
ER  - 
%0 Journal Article
%A Rony A. Bitan
%T On the genera of semisimple groups defined over an integral domain of a global function field
%J Journal de théorie des nombres de Bordeaux
%D 2018
%P 1037-1057
%V 30
%N 3
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1064/
%R 10.5802/jtnb.1064
%G en
%F JTNB_2018__30_3_1037_0
Rony A. Bitan. On the genera of semisimple groups defined over an integral domain of a global function field. Journal de théorie des nombres de Bordeaux, Tome 30 (2018) no. 3, pp. 1037-1057. doi : 10.5802/jtnb.1064. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1064/

[1] Emil Artin Quadratische Körper im Gebiete der höheren Kongruenzen, Math. Z., Volume 19 (1927), pp. 153-206 | DOI | Zbl

[2] Théorie des Topos et Cohomologie Étale des Schémas (SGA 4) (Michael Artin; Alexander Grothendieck; Jean-Louis Verdier, eds.), Lecture Notes in Mathematics, 269, 270, 305, Springer, 1972/1973

[3] Kai Behrend; Ajneet Dhillon Connected components of moduli stacks of torsors via Tamagawa numbers, Can. J. Math., Volume 61 (2009) no. 1, pp. 3-28 | DOI | MR | Zbl

[4] Rony A. Bitan The Hasse principle for bilinear symmetric forms over a ring of integers of a global function field, J. Number Theory, Volume 168 (2016), pp. 346-359 | DOI | MR | Zbl

[5] Rony A. Bitan Between the genus and the Γ-genus of an integral quadratic Γ-form, Acta Arith., Volume 181 (2017) no. 2, pp. 173-183 | DOI | MR | Zbl

[6] Rony A. Bitan On the classification of quadratic forms over an integral domain of a global function field, J. Number Theory, Volume 180 (2017), pp. 26-44 | DOI | MR | Zbl

[7] Rony A. Bitan; Ralf Köhl A building-theoretic approach to relative Tamagawa numbers of semisimple groups over global function fields, Funct. Approximatio, Comment. Math., Volume 53 (2015) no. 2, pp. 215-247 | MR | Zbl

[8] Armand Borel; Gopal Prasad Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups, Publ. Math., Inst. Hautes Étud. Sci., Volume 69 (1989), pp. 119-171 | DOI | Numdam | Zbl

[9] François Bruhat; Jacques Tits Groupes réductifs sur un corps local. II. Schémas en groupes. Existence d’une donnée radicielle valuée, Publ. Math., Inst. Hautes Étud. Sci., Volume 60 (1984), pp. 197-376 | Numdam | Zbl

[10] Baptiste Calmès; Jean Fasel Groupes Classiques, On group schemes (Panoramas et Synthèses), Volume 46, Société Mathématique de France, 2015, pp. 1-133 | MR | Zbl

[11] Pierre-Emmanuel Caprace; Nicolas Monod Isometry groups of non-positively curved spaces: discrete subgroups, J. Topol., Volume 2 (2009), pp. 701-746 | DOI | MR | Zbl

[12] Vladimir Chernousov; Philippe Gille; Arturo Pianzola A classification of torsors over Laurent polynomial rings, Comment. Math. Helv., Volume 92 (2017) no. 1, pp. 37-55 | DOI | MR | Zbl

[13] Brian Conrad Math 252. Properties of orthogonal groups http://math.stanford.edu/~conrad/252Page/handouts/O(q).pdf

[14] Brian Conrad Math 252. Reductive group schemes (http://math.stanford.edu/~conrad/252Page/handouts/luminysga3.pdf) | Zbl

[15] Séminaire de Géométrie Algébrique du Bois Marie 1962-64 (SGA 3). Schémas en groupes, Tome II (Michel Demazure; Alexander Grothendieck, eds.), Documents Mathématiques, Société Mathématique de France, 2011

[16] Jean Giraud Cohomologie non abélienne, Grundlehren der Mathematischen Wissenschaften, 179, Springer, 1971 | Zbl

[17] Cristian D. González-Avilés Quasi-abelian crossed modules and nonabelian cohomology, J. Algebra, Volume 369 (2012), pp. 235-255 | DOI | MR | Zbl

[18] Alexander Grothendieck Le groupe de Brauer III: Exemples et compléments, Dix Exposes Cohomologie Schemas (Advanced Studies Pure Math.), Volume 3, American Mathematical Society, 1968, pp. 88-188 | Zbl

[19] Günter Harder Über die Galoiskohomologie halbeinfacher algebraischer Gruppen, III, J. Reine Angew. Math., Volume 274/275 (1975), pp. 125-138 | Zbl

[20] Moshe Jarden The Čebotarev density theorem for function fields: An elementary approach, Math. Ann., Volume 261 (1982) no. 4, pp. 467-475 | DOI | Zbl

[21] Max-Albert Knus Quadratic and hermitian forms over rings, Grundlehren der Mathematischen Wissenschaften, 294, Springer, 1991 | MR | Zbl

[22] H. W. Lenstra Galois theory for schemes (http://websites.math.leidenuniv.nl/algebra/GSchemes.pdf)

[23] Jacob Lurie Tamagawa Numbers of Algebraic Groups Over Function Fields

[24] James S. Milne Étale Cohomology, Princeton Mathematical Series, 33, Princeton University Press, 1980 | MR | Zbl

[25] James S. Milne Arithmetic Duality Theorems, BookSurge, 2006 | Zbl

[26] Yevsey Nisnevich Étale Cohomology and Arithmetic of Semisimple Groups, Harvard University (USA) (1982) (Ph. D. Thesis)

[27] Takashi Ono On the Relative Theory of Tamagawa Numbers, Ann. Math., Volume 82 (1965), pp. 88-111 | MR | Zbl

[28] Vladimir Platonov; Andrei Rapinchuk Algebraic Groups and Number Theory, Pure and Applied Mathematics, 139, Academic Press Inc., 1994 | MR | Zbl

[29] Michael Rosen Number Theory in Function Fields, Graduate Texts in Mathematics, 210, Springer, 2000 | Zbl

[30] Jean-Pierre Serre Algebraic Groups and Class Fields, Graduate Texts in Mathematics, 117, Springer, 1988 | MR | Zbl

[31] Alexei N. Skorobogatov Torsors and Rational Points, Cambridge Tracts in Mathematics, 144, Cambridge University Press, 2001 | MR | Zbl

[32] Nguyêñ Q. Thǎńg A Norm Principle for class groups of reductive group schemes over Dedekind rings, Vietnam J. Math., Volume 43 (2015) no. 2, pp. 257-281 | DOI | Zbl

[33] André Weil Adèles and Algebraic Groups, Progress in Mathematics, 23, Birkhäuser, 1982 | Zbl

Cité par Sources :