We introduce a qualitative conjecture, in the spirit of Campana, to the effect that certain subsets of rational points on a variety over a number field, or a Deligne–Mumford stack over a ring of
Nous introduisons une conjecture qualitative, dans l’esprit de Campana, qui prédit que certains sous-ensembles de points rationnels sur une variété sur un corps de nombres, ou un champ de Deligne–Mumford sur un anneau de
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1037
Keywords: Campana points, Vojta’s conjecture, abelian varieties, level structures
Dan Abramovich 1 ; Anthony Várilly-Alvarado 2

@article{JTNB_2018__30_2_525_0, author = {Dan Abramovich and Anthony V\'arilly-Alvarado}, title = {Campana points, {Vojta{\textquoteright}s} conjecture, and level structures on semistable abelian varieties}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {525--532}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {2}, year = {2018}, doi = {10.5802/jtnb.1037}, mrnumber = {3891325}, zbl = {1448.11145}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1037/} }
TY - JOUR AU - Dan Abramovich AU - Anthony Várilly-Alvarado TI - Campana points, Vojta’s conjecture, and level structures on semistable abelian varieties JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 525 EP - 532 VL - 30 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1037/ DO - 10.5802/jtnb.1037 LA - en ID - JTNB_2018__30_2_525_0 ER -
%0 Journal Article %A Dan Abramovich %A Anthony Várilly-Alvarado %T Campana points, Vojta’s conjecture, and level structures on semistable abelian varieties %J Journal de théorie des nombres de Bordeaux %D 2018 %P 525-532 %V 30 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1037/ %R 10.5802/jtnb.1037 %G en %F JTNB_2018__30_2_525_0
Dan Abramovich; Anthony Várilly-Alvarado. Campana points, Vojta’s conjecture, and level structures on semistable abelian varieties. Journal de théorie des nombres de Bordeaux, Tome 30 (2018) no. 2, pp. 525-532. doi : 10.5802/jtnb.1037. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1037/
[1] Birational geometry for number theorists, Arithmetic geometry (Clay Mathematics Proceedings), Volume 8, American Mathematical Society, 2009, pp. 335-373 | MR | Zbl
[2] Level structures on abelian varieties and Vojta’s conjecture, Compos. Math., Volume 153 (2017) no. 2, pp. 373-394 | DOI | MR | Zbl
[3] Level structures on abelian varieties, Kodaira dimensions, and Lang’s conjecture, Adv. Math., Volume 329 (2018), pp. 523-540 | DOI | MR | Zbl
[4] Fibres multiples sur les surfaces: aspects geométriques, hyperboliques et arithmétiques, Manuscr. Math., Volume 117 (2005) no. 4, pp. 429-461 | DOI | Zbl
[5] Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 22, Springer, 1990, xii+316 pages | MR | Zbl
[6] Diophantine geometry: An introduction, Graduate Texts in Mathematics, 201, Springer, 2000, xiii+558 pages | Zbl
[7]
[8] A more general
Cité par Sources :