Our results concern certain analytic functions on the open unit poly-disc in
Nos résultats concernent certaines fonctions analytiques sur la boule ouverte unité dans
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1030
Keywords: Manin–Mumford,
Vlad Serban 1

@article{JTNB_2018__30_2_393_0, author = {Vlad Serban}, title = {An infinitesimal $p$-adic multiplicative {Manin{\textendash}Mumford} {Conjecture}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {393--408}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {2}, year = {2018}, doi = {10.5802/jtnb.1030}, zbl = {1443.11247}, mrnumber = {3891318}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1030/} }
TY - JOUR AU - Vlad Serban TI - An infinitesimal $p$-adic multiplicative Manin–Mumford Conjecture JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 393 EP - 408 VL - 30 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1030/ DO - 10.5802/jtnb.1030 LA - en ID - JTNB_2018__30_2_393_0 ER -
%0 Journal Article %A Vlad Serban %T An infinitesimal $p$-adic multiplicative Manin–Mumford Conjecture %J Journal de théorie des nombres de Bordeaux %D 2018 %P 393-408 %V 30 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1030/ %R 10.5802/jtnb.1030 %G en %F JTNB_2018__30_2_393_0
Vlad Serban. An infinitesimal $p$-adic multiplicative Manin–Mumford Conjecture. Journal de théorie des nombres de Bordeaux, Tome 30 (2018) no. 2, pp. 393-408. doi : 10.5802/jtnb.1030. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1030/
[1] Hecke orbits on Siegel modular varieties, Geometric methods in algebra and number theory (Progress in Mathematics), Volume 235, Birkhäuser, 2005, pp. 71-107 | DOI | MR | Zbl
[2] A rigidity result for
[3] The Iwasawa
[4] Constancy of adjoint
[5] Hecke fields of Hilbert modular analytic families, Automorphic forms and related geometry: assessing the legacy of I. I. Piatetski-Shapiro (Contemporary Mathematics), Volume 614, American Mathematical Society, 2014, pp. 97-137 | DOI | MR | Zbl
[6] Integral points on curves, Publ. Math., Inst. Hautes Étud. Sci., Volume 6 (1960), pp. 319-335 | Numdam
[7] Division points on curves, Ann. Mat. Pura Appl., Volume 70 (1965) no. 1, pp. 229-234 | DOI | MR | Zbl
[8] Formal complex multiplication in local fields, Ann. Math., Volume 81 (1965) no. 2, pp. 380-387 | DOI | MR | Zbl
[9] On
[10] Power series in
[11] Courbes sur une variété abélienne et points de torsion, Invent. Math., Volume 71 (1983) no. 1, pp. 207-233 | DOI | Zbl
[12]
[13] Linear forms in
[14] Positivité et discrétion des points algébriques des courbes, Ann. Math., Volume 147 (1998) no. 1, pp. 167-179 | DOI | MR | Zbl
[15] Manin-Mumford, André-Oort, the equidistribution point of view, Equidistribution in number theory, an introduction (NATO Science Series II: Mathematics, Physics and Chemistry), Volume 237, Springer, 2007, pp. 103-138 | DOI | MR | Zbl
[16] Positive line bundles on arithmetic varieties, J. Am. Math. Soc., Volume 8 (1995) no. 1, pp. 87-221 | MR | Zbl
[17] Equidistribution of small points on abelian varieties, Ann. Math., Volume 147 (1998) no. 1, pp. 159-165 | DOI | MR | Zbl
Cité par Sources :