Three variations on the Stern-Brocot sequence are related to the celebrated Thue-Morse sequence. In the present note, the generating power series of these four sequences are considered. Whereas one of these was known to define a rational function, the other three are proved here to be algebraically independent over
Trois variantes de la suite de Stern-Brocot sont liées à la célèbre suite de Thue-Morse. Dans la présente note, les fonctions génératrices de ces quatre suites sont considérées. Tandis que l’une d’entre elles est connue comme étant rationnelle, l’indépendance algébrique sur
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.1022
Keywords: Stern-Brocot sequence, transcendence, algebraic independence, Mahler’s method
Peter Bundschuh 1 ; Keijo Väänänen 2

@article{JTNB_2018__30_1_195_0, author = {Peter Bundschuh and Keijo V\"a\"an\"anen}, title = {Note on the {Stern-Brocot} sequence, some relatives, and their generating power series}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {195--202}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {30}, number = {1}, year = {2018}, doi = {10.5802/jtnb.1022}, zbl = {1428.11132}, mrnumber = {3809715}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1022/} }
TY - JOUR AU - Peter Bundschuh AU - Keijo Väänänen TI - Note on the Stern-Brocot sequence, some relatives, and their generating power series JO - Journal de théorie des nombres de Bordeaux PY - 2018 SP - 195 EP - 202 VL - 30 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1022/ DO - 10.5802/jtnb.1022 LA - en ID - JTNB_2018__30_1_195_0 ER -
%0 Journal Article %A Peter Bundschuh %A Keijo Väänänen %T Note on the Stern-Brocot sequence, some relatives, and their generating power series %J Journal de théorie des nombres de Bordeaux %D 2018 %P 195-202 %V 30 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1022/ %R 10.5802/jtnb.1022 %G en %F JTNB_2018__30_1_195_0
Peter Bundschuh; Keijo Väänänen. Note on the Stern-Brocot sequence, some relatives, and their generating power series. Journal de théorie des nombres de Bordeaux, Tome 30 (2018) no. 1, pp. 195-202. doi : 10.5802/jtnb.1022. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.1022/
[1] Lacunary formal power series and the Stern-Brocot sequence, Acta Arith., Volume 159 (2013) no. 1, pp. 47-61 | DOI | MR | Zbl
[2] Transcendence and algebraic independence of series related to Stern’s sequence, Int. J. Number Theory, Volume 8 (2012) no. 2, pp. 361-376 | DOI | MR | Zbl
[3] Algebraic independence of infinite products and their derivatives, Number theory and related fields (Springer Proceedings in Mathematics & Statistics), Volume 43, Springer, 2013, pp. 143-156 | DOI | MR | Zbl
[4] Algebraic independence of the generating functions of Stern’s sequence and of its twist, J. Théor. Nombres Bordx., Volume 25 (2013) no. 1, pp. 43-57 | DOI | Numdam | MR | Zbl
[5] Über Potenzreihen mit ganzzahligen Koeffizienten, Math. Z., Volume 9 (1921), pp. 1-13 | DOI | Zbl
[6] On the algebraic independence of holomorphic solutions of certain functional equations and their values, Math. Ann., Volume 227 (1977), pp. 9-50 | DOI | MR | Zbl
[7] New approach in Mahler’s method, J. Reine Angew. Math., Volume 407 (1990), pp. 202-219 | MR | Zbl
[8] Mahler Functions and Transcendence, Lecture Notes in Mathematics, 1631, Springer, 1996, viii+185 pages | MR | Zbl
[9] Algebraic theory of difference equations and Mahler functions, Aequationes Math., Volume 84 (2012) no. 3, pp. 245-259 | DOI | MR | Zbl
[10] Solvability of difference Riccati equations by elementary operations, J. Math. Sci., Tokyo, Volume 17 (2010) no. 2, pp. 159-178 | MR | Zbl
[11] Indépendance algébrique et K-fonctions, J. Reine Angew. Math., Volume 497 (1998), pp. 1-15 | DOI | Zbl
Cité par Sources :