We study higher-dimensional interlacing Fibonacci sequences, generated via both Chebyshev type functions and
From either the rational or the integer sequences we construct sequences of vectors in
It is shown that the families of orthogonal generating polynomials defining the recurrence relations employed, are divisible by the minimal polynomials of certain algebraic numbers, and the three-term recurrences and differential equations for these polynomials are derived. Further results relating to the Christoffel-Darboux formula, Rodrigues’ formula and raising and lowering operators are also discussed. Moreover, it is shown that the Mellin transforms of these polynomials satisfy a functional equation of the form
Nous étudions les suites de Fibonacci entrelacées multidimensionnelles, générées avec des fonctions de type Tchebychev ou des relations de récurrence
À partir des suites, rationnelles ou entières, on construit des suites vectorielles dans
On montre que les familles de polynômes orthogonaux générateurs, qui définissent les relations de récurrence, sont divisibles par les polynômes minimaux de certains nombres algébriques, et on en déduit les récurrences linéaires du second ordre et les équations différentielles pour ces polynômes. De plus, on discute de plusieurs résultats concernant la formule de Christoffel-Darboux, la formule de Rodrigues et les opérateurs d’échelle. En outre, on démontre que les transformations de Mellin de ces polynômes satisfont une équation fonctionnelle de la forme
Révisé le :
Accepté le :
Publié le :
Keywords: Special Sequences and Polynomials, Generalised Fibonacci Numbers, Orthogonal Polynomials, Vector Convergents
Mark W. Coffey 1 ; James L. Hindmarsh 2 ; Matthew C. Lettington 2 ; John D. Pryce 2

@article{JTNB_2017__29_2_369_0, author = {Mark W. Coffey and James L. Hindmarsh and Matthew C. Lettington and John D. Pryce}, title = {On {Higher-Dimensional} {Fibonacci} {Numbers,} {Chebyshev} {Polynomials} and {Sequences} of {Vector} {Convergents}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {369--423}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {2}, year = {2017}, doi = {10.5802/jtnb.985}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.985/} }
TY - JOUR AU - Mark W. Coffey AU - James L. Hindmarsh AU - Matthew C. Lettington AU - John D. Pryce TI - On Higher-Dimensional Fibonacci Numbers, Chebyshev Polynomials and Sequences of Vector Convergents JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 369 EP - 423 VL - 29 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.985/ DO - 10.5802/jtnb.985 LA - en ID - JTNB_2017__29_2_369_0 ER -
%0 Journal Article %A Mark W. Coffey %A James L. Hindmarsh %A Matthew C. Lettington %A John D. Pryce %T On Higher-Dimensional Fibonacci Numbers, Chebyshev Polynomials and Sequences of Vector Convergents %J Journal de théorie des nombres de Bordeaux %D 2017 %P 369-423 %V 29 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.985/ %R 10.5802/jtnb.985 %G en %F JTNB_2017__29_2_369_0
Mark W. Coffey; James L. Hindmarsh; Matthew C. Lettington; John D. Pryce. On Higher-Dimensional Fibonacci Numbers, Chebyshev Polynomials and Sequences of Vector Convergents. Journal de théorie des nombres de Bordeaux, Tome 29 (2017) no. 2, pp. 369-423. doi : 10.5802/jtnb.985. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.985/
[1] Special functions, Encyclopedia of Mathematics and Its Applications, 71, Cambridge University Press, 1999, xvi+664 pages
[2] Generalized raising and lowering operators for supersymmetric quantum mechanics (2015) (https://arxiv.org/abs/1501.06649)
[3] Mellin transforms with only critical zeros: Legendre functions, J. Number Theory, Volume 148 (2015) no. 2, pp. 507-536 | DOI
[4] On Fibonacci Polynomial Expressions for Sums of
[5] The Higher Arithmetic. An introduction to the theory of numbers, Cambridge University Press, 2008, ix+239 pages
[6] Lectures on Number Theory, History of Mathematics (Providence), 16, American Mathematical Society, 1999, xx+275 pages
[7] Combinatorial identities. A standardized set of tables listing 500 binomial coefficient summations., Morgantown, 1972, viii+106 pages
[8] Calculus Methods in Algebra, Part One, WPKJS, 2000 (in Polish)
[9] Fibonacci and Lucas numbers with applications, Pure and Applied Mathematics, John Wiley, 2001, xvi++652 pages
[10] The field
[11] Fleck’s congruence, associated magic squares and a zeta identity, Funct. Approximatio, Comment. Math., Volume 45 (2011) no. 2, pp. 165-205 | DOI
[12] A trio of Bernoulli relations, their implications for the Ramanujan polynomials and the special values of the Riemann zeta function, Acta Arith., Volume 158 (2013) no. 1, pp. 1-31 | DOI
[13] Formulas and Theorems for the Special Functions of Mathematical Physics, Chelsea Publishing Company, 1949, 172 pages
[14] Chebyshev polynomials, Chapman & Hall/CRC, 2003, xiv+341 pages
[15] Equilateral triangles and the Golden Ratio, The Mathematical Gazette, Volume 72 (1988), pp. 27-30 | DOI
[16] Chebyshev Polynomials: From Approximation Theory to Algebra and Number Theory, Pure and Applied Mathematics, John Wiley, 1990, xvi+249 pages
[17] Golden fields: A case for the heptagon, Math. Mag., Volume 70 (1997) no. 1, pp. 22-31 | DOI
[18] On the sum
[19] On Fleck quotients, Acta Arith., Volume 127 (2007) no. 4, pp. 337-363 | DOI
[20] Homogeneous polynomials and the minimal polynomial of
[21] Orthogonal Polynomials, American Mathematical Society Colloquium Publications, 23, American Mathematical Society, 1975, xii+432 pages
[22] Fibonacci and Lucas Numbers, and the Golden Section, Ellis Horwood Books in Mathematics and its Applications, Halsted Press, 1989, 190 pages
[23] The Minimal Polynomial of
[24] Some congruences for binomial coefficients, Mich. Math. J., Volume 24 (1977), pp. 141-151 | DOI
Cité par Sources :