Let
Soit
Révisé le :
Accepté le :
Publié le :
Keywords: dynamical degree, arithmetic degree, abelian variety
Joseph H. Silverman 1

@article{JTNB_2017__29_1_151_0, author = {Joseph H. Silverman}, title = {Arithmetic and {Dynamical} {Degrees} on {Abelian} {Varieties}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {151--167}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {1}, year = {2017}, doi = {10.5802/jtnb.973}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.973/} }
TY - JOUR AU - Joseph H. Silverman TI - Arithmetic and Dynamical Degrees on Abelian Varieties JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 151 EP - 167 VL - 29 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.973/ DO - 10.5802/jtnb.973 LA - en ID - JTNB_2017__29_1_151_0 ER -
%0 Journal Article %A Joseph H. Silverman %T Arithmetic and Dynamical Degrees on Abelian Varieties %J Journal de théorie des nombres de Bordeaux %D 2017 %P 151-167 %V 29 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.973/ %R 10.5802/jtnb.973 %G en %F JTNB_2017__29_1_151_0
Joseph H. Silverman. Arithmetic and Dynamical Degrees on Abelian Varieties. Journal de théorie des nombres de Bordeaux, Tome 29 (2017) no. 1, pp. 151-167. doi : 10.5802/jtnb.973. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.973/
[1] Algebraic entropy, Comm. Math. Phys., Volume 204 (199) no. 2, pp. 425-437 | DOI
[2] Comparison of dynamical degrees for semi-conjugate meromorphic maps, Comment. Math. Helv., Volume 86 (2011) no. 4, pp. 817-840 | DOI
[3] On the dynamical degrees of meromorphic maps preserving a fibration, Commun. Contemp. Math., Volume 14 (2012) no. 6, 1250042, 18 pages | DOI
[4] Density of orbits of endomorphisms of abelian varieties (2014) (http://arxiv.org/abs/1412.2029)
[5] Ergodic properties of rational mappings with large topological degree, Ann. Math., Volume 161 (2055) no. 3, pp. 1589-1607 | DOI
[6] Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York, 1977, xvi+496 pages
[7] Diophantine Geometry: An Introduction, Graduate Texts in Mathematics, 201, Springer-Verlag, New York, 2000, xiii+558 pages
[8] Examples of dynamical degree equals arithmetic degree, Michigan Math. J., Volume 63 (2014) no. 1, pp. 41-63 | DOI
[9] Dynamical canonical heights for Jordan blocks, arithmetic degrees of orbits, and nef canonical heights on abelian varieties, Trans. Amer. Math. Soc., Volume 368 (2016) no. 7, pp. 5009-5035 | DOI
[10] On the dynamical and arithmetic degrees of rational self-maps of algebraic varieties, J. Reine Angew. Math., Volume 713 (2016), pp. 21-48
[11] Fundamentals of Diophantine Geometry, Springer-Verlag, New York, 1983, xviii+370 pages
[12] Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, London: Oxford University Press, 1970, viii+242 pages
[13] Dynamical degree, arithmetic entropy, and canonical heights for dominant rational self-maps of projective space, Ergodic Theory Dynam. Systems, Volume 34 (2014) no. 2, pp. 647-678 | DOI
Cité par Sources :