Soit une application rationnelle dominante d’une variété lisse et soit , tous deux définis sur . Le degré dynamique mesure la complexité géométrique des itérations de , tandis que le degré arithmétique mesure la complexité arithmétique de la -orbite de . Il est connu que , et il est conjecturé que si la -orbite de est Zariski dense dans , alors . Dans cette note, nous prouvons cette conjecture dans le cas où est une variété abélienne, étendant des travaux antérieurs où la conjecture a été prouvée pour les isogénies.
Let be a dominant rational map of a smooth variety and let , all defined over . The dynamical degree measures the geometric complexity of the iterates of , and the arithmetic degree measures the arithmetic complexity of the forward -orbit of . It is known that , and it is conjectured that if the -orbit of is Zariski dense in , then , i.e. arithmetic complexity equals geometric complexity. In this note we prove this conjecture in the case that is an abelian variety, extending earlier work in which the conjecture was proven for isogenies.
Révisé le :
Accepté le :
Publié le :
Mots-clés : dynamical degree, arithmetic degree, abelian variety
Joseph H. Silverman 1
@article{JTNB_2017__29_1_151_0, author = {Joseph H. Silverman}, title = {Arithmetic and {Dynamical} {Degrees} on {Abelian} {Varieties}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {151--167}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {29}, number = {1}, year = {2017}, doi = {10.5802/jtnb.973}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.973/} }
TY - JOUR AU - Joseph H. Silverman TI - Arithmetic and Dynamical Degrees on Abelian Varieties JO - Journal de théorie des nombres de Bordeaux PY - 2017 SP - 151 EP - 167 VL - 29 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.973/ DO - 10.5802/jtnb.973 LA - en ID - JTNB_2017__29_1_151_0 ER -
%0 Journal Article %A Joseph H. Silverman %T Arithmetic and Dynamical Degrees on Abelian Varieties %J Journal de théorie des nombres de Bordeaux %D 2017 %P 151-167 %V 29 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.973/ %R 10.5802/jtnb.973 %G en %F JTNB_2017__29_1_151_0
Joseph H. Silverman. Arithmetic and Dynamical Degrees on Abelian Varieties. Journal de théorie des nombres de Bordeaux, Tome 29 (2017) no. 1, pp. 151-167. doi : 10.5802/jtnb.973. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.973/
[1] Algebraic entropy, Comm. Math. Phys., Volume 204 (199) no. 2, pp. 425-437 | DOI
[2] Comparison of dynamical degrees for semi-conjugate meromorphic maps, Comment. Math. Helv., Volume 86 (2011) no. 4, pp. 817-840 | DOI
[3] On the dynamical degrees of meromorphic maps preserving a fibration, Commun. Contemp. Math., Volume 14 (2012) no. 6, 1250042, 18 pages | DOI
[4] Density of orbits of endomorphisms of abelian varieties (2014) (http://arxiv.org/abs/1412.2029)
[5] Ergodic properties of rational mappings with large topological degree, Ann. Math., Volume 161 (2055) no. 3, pp. 1589-1607 | DOI
[6] Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York, 1977, xvi+496 pages
[7] Diophantine Geometry: An Introduction, Graduate Texts in Mathematics, 201, Springer-Verlag, New York, 2000, xiii+558 pages
[8] Examples of dynamical degree equals arithmetic degree, Michigan Math. J., Volume 63 (2014) no. 1, pp. 41-63 | DOI
[9] Dynamical canonical heights for Jordan blocks, arithmetic degrees of orbits, and nef canonical heights on abelian varieties, Trans. Amer. Math. Soc., Volume 368 (2016) no. 7, pp. 5009-5035 | DOI
[10] On the dynamical and arithmetic degrees of rational self-maps of algebraic varieties, J. Reine Angew. Math., Volume 713 (2016), pp. 21-48
[11] Fundamentals of Diophantine Geometry, Springer-Verlag, New York, 1983, xviii+370 pages
[12] Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, London: Oxford University Press, 1970, viii+242 pages
[13] Dynamical degree, arithmetic entropy, and canonical heights for dominant rational self-maps of projective space, Ergodic Theory Dynam. Systems, Volume 34 (2014) no. 2, pp. 647-678 | DOI
Cité par Sources :