Arithmetic and Dynamical Degrees on Abelian Varieties
Journal de théorie des nombres de Bordeaux, Tome 29 (2017) no. 1, pp. 151-167.

Let φ:XX be a dominant rational map of a smooth variety and let xX, all defined over ¯. The dynamical degree δ(φ) measures the geometric complexity of the iterates of φ, and the arithmetic degree α(φ,x) measures the arithmetic complexity of the forward φ-orbit of x. It is known that α(φ,x)δ(φ), and it is conjectured that if the φ-orbit of x is Zariski dense in X, then α(φ,x)=δ(φ), i.e. arithmetic complexity equals geometric complexity. In this note we prove this conjecture in the case that X is an abelian variety, extending earlier work in which the conjecture was proven for isogenies.

Soit φ:XX une application rationnelle dominante d’une variété lisse et soit xX, tous deux définis sur ¯. Le degré dynamique δ(φ) mesure la complexité géométrique des itérations de φ, tandis que le degré arithmétique α(φ,x) mesure la complexité arithmétique de la φ-orbite de x. Il est connu que α(φ,x)δ(φ), et il est conjecturé que si la φ-orbite de x est Zariski dense dans X, alors α(φ,x)=δ(φ). Dans cette note, nous prouvons cette conjecture dans le cas où X est une variété abélienne, étendant des travaux antérieurs où la conjecture a été prouvée pour les isogénies.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/jtnb.973
Classification : 37P30, 11G10, 11G50, 37P15
Mots-clés : dynamical degree, arithmetic degree, abelian variety

Joseph H. Silverman 1

1 Mathematics Department, Box 1917 Brown University, Providence, RI 02912, USA
Licence : CC-BY-ND 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{JTNB_2017__29_1_151_0,
     author = {Joseph H. Silverman},
     title = {Arithmetic and {Dynamical} {Degrees} on {Abelian} {Varieties}},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {151--167},
     publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
     volume = {29},
     number = {1},
     year = {2017},
     doi = {10.5802/jtnb.973},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.973/}
}
TY  - JOUR
AU  - Joseph H. Silverman
TI  - Arithmetic and Dynamical Degrees on Abelian Varieties
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2017
SP  - 151
EP  - 167
VL  - 29
IS  - 1
PB  - Société Arithmétique de Bordeaux
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.973/
DO  - 10.5802/jtnb.973
LA  - en
ID  - JTNB_2017__29_1_151_0
ER  - 
%0 Journal Article
%A Joseph H. Silverman
%T Arithmetic and Dynamical Degrees on Abelian Varieties
%J Journal de théorie des nombres de Bordeaux
%D 2017
%P 151-167
%V 29
%N 1
%I Société Arithmétique de Bordeaux
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.973/
%R 10.5802/jtnb.973
%G en
%F JTNB_2017__29_1_151_0
Joseph H. Silverman. Arithmetic and Dynamical Degrees on Abelian Varieties. Journal de théorie des nombres de Bordeaux, Tome 29 (2017) no. 1, pp. 151-167. doi : 10.5802/jtnb.973. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.973/

[1] Marc P. Bellon; Claude Michel Viallet Algebraic entropy, Comm. Math. Phys., Volume 204 (199) no. 2, pp. 425-437 | DOI

[2] Tien-Cuong Dinh; Viêt-Anh Nguyên Comparison of dynamical degrees for semi-conjugate meromorphic maps, Comment. Math. Helv., Volume 86 (2011) no. 4, pp. 817-840 | DOI

[3] Tien-Cuong Dinh; Viêt-Anh Nguyên; Tuyen Trung Truong On the dynamical degrees of meromorphic maps preserving a fibration, Commun. Contemp. Math., Volume 14 (2012) no. 6, 1250042, 18 pages | DOI

[4] Dragos Ghioca; Thomas Scanlon Density of orbits of endomorphisms of abelian varieties (2014) (http://arxiv.org/abs/1412.2029)

[5] Vincent Guedj Ergodic properties of rational mappings with large topological degree, Ann. Math., Volume 161 (2055) no. 3, pp. 1589-1607 | DOI

[6] Robin Hartshorne Algebraic Geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York, 1977, xvi+496 pages

[7] Marc Hindry; Joseph H. Silverman Diophantine Geometry: An Introduction, Graduate Texts in Mathematics, 201, Springer-Verlag, New York, 2000, xiii+558 pages

[8] Shu Kawaguchi; Joseph H. Silverman Examples of dynamical degree equals arithmetic degree, Michigan Math. J., Volume 63 (2014) no. 1, pp. 41-63 | DOI

[9] Shu Kawaguchi; Joseph H. Silverman Dynamical canonical heights for Jordan blocks, arithmetic degrees of orbits, and nef canonical heights on abelian varieties, Trans. Amer. Math. Soc., Volume 368 (2016) no. 7, pp. 5009-5035 | DOI

[10] Shu Kawaguchi; Joseph H. Silverman On the dynamical and arithmetic degrees of rational self-maps of algebraic varieties, J. Reine Angew. Math., Volume 713 (2016), pp. 21-48

[11] Serge Lang Fundamentals of Diophantine Geometry, Springer-Verlag, New York, 1983, xviii+370 pages

[12] David Mumford Abelian Varieties, Tata Institute of Fundamental Research Studies in Mathematics, 5, London: Oxford University Press, 1970, viii+242 pages

[13] Joseph H. Silverman Dynamical degree, arithmetic entropy, and canonical heights for dominant rational self-maps of projective space, Ergodic Theory Dynam. Systems, Volume 34 (2014) no. 2, pp. 647-678 | DOI

  • Jungkai Alfred Chen; Hsueh-Yung Lin; Keiji Oguiso On the Kawaguchi–Silverman conjecture for birational automorphisms of irregular varieties, Forum Mathematicum (2025) | DOI:10.1515/forum-2023-0350
  • Sichen Li Kawaguchi-Silverman conjecture on automorphisms of projective threefolds, International Journal of Mathematics, Volume 35 (2024) no. 3, p. 16 (Id/No 2450002) | DOI:10.1142/s0129167x24500022 | Zbl:1547.37115
  • Keiji Oguiso Endomorphisms of a variety of Ueno type and Kawaguchi-Silverman conjecture, International Journal of Mathematics, Volume 35 (2024) no. 13, p. 20 (Id/No 2450055) | DOI:10.1142/s0129167x24500551 | Zbl:7937616
  • Joseph H. Silverman Survey lecture on arithmetic dynamics, International congress of mathematicians 2022, ICM 2022, Helsinki, Finland, virtual, July 6–14, 2022. Volume 3. Sections 1–4, Berlin: European Mathematical Society (EMS), 2023, pp. 1682-1710 | DOI:10.4171/icm2022/67 | Zbl:1548.37015
  • Kaoru Sano; Takahiro Shibata Zariski density of points with maximal arithmetic degree, Michigan Mathematical Journal, Volume 73 (2023) no. 2, pp. 429-448 | DOI:10.1307/mmj/20205960 | Zbl:1514.14029
  • Yohsuke Matsuzawa; Sheng Meng; Takahiro Shibata; De-Qi Zhang Non-density of points of small arithmetic degrees, The Journal of Geometric Analysis, Volume 33 (2023) no. 4, p. 41 (Id/No 112) | DOI:10.1007/s12220-022-01156-y | Zbl:1512.37111
  • Nguyen-Bac Dang; Dragos Ghioca; Fei Hu; John Lesieutre; Matthew Satriano Higher arithmetic degrees of dominant rational self-maps, Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie V, Volume 23 (2022) no. 1, pp. 463-481 | DOI:10.2422/2036-2145.201908_014 | Zbl:1496.14021
  • Sheng Meng; De-Qi Zhang Kawaguchi-Silverman conjecture for certain surjective endomorphisms, Documenta Mathematica, Volume 27 (2022), pp. 1605-1642 | DOI:10.25537/dm.2022v27.1605-1642 | Zbl:1509.14036
  • Yohsuke Matsuzawa; Shou Yoshikawa Kawaguchi-Silverman conjecture for endomorphisms on rationally connected varieties admitting an int-amplified endomorphism, Mathematische Annalen, Volume 382 (2022) no. 3-4, pp. 1681-1704 | DOI:10.1007/s00208-021-02305-4 | Zbl:1491.14073
  • Wade Hindes Counting points of bounded height in monoid orbits, Mathematische Zeitschrift, Volume 301 (2022) no. 4, pp. 3395-3416 | DOI:10.1007/s00209-022-03021-8 | Zbl:1505.37109
  • Jia Jia; Takahiro Shibata; De-Qi Zhang Potential density of projective varieties having an int-amplified endomorphism, The New York Journal of Mathematics, Volume 28 (2022), pp. 433-444 | Zbl:1493.37117
  • John Lesieutre; Matthew Satriano Canonical heights on hyper-Kähler varieties and the Kawaguchi-Silverman conjecture, IMRN. International Mathematics Research Notices, Volume 2021 (2021) no. 10, pp. 7677-7714 | DOI:10.1093/imrn/rnz067 | Zbl:1484.14026
  • Sichen Li; Yohsuke Matsuzawa A note on Kawaguchi-Silverman conjecture, International Journal of Mathematics, Volume 32 (2021) no. 11, p. 12 (Id/No 2150085) | DOI:10.1142/s0129167x21500853 | Zbl:1487.37105
  • Yohsuke Matsuzawa Kawaguchi-Silverman conjecture for endomorphisms on several classes of varieties, Advances in Mathematics, Volume 366 (2020), p. 26 (Id/No 107086) | DOI:10.1016/j.aim.2020.107086 | Zbl:1436.37101
  • Yohsuke Matsuzawa; Kaoru Sano Arithmetic and dynamical degrees of self-morphisms of semi-abelian varieties, Ergodic Theory and Dynamical Systems, Volume 40 (2020) no. 6, pp. 1655-1672 | DOI:10.1017/etds.2018.117 | Zbl:1442.37123
  • Kaoru Sano Dynamical degree and arithmetic degree of endomorphisms on product varieties, Tôhoku Mathematical Journal. Second Series, Volume 72 (2020) no. 1, pp. 1-13 | DOI:10.2748/tmj/1585101618 | Zbl:1464.37092
  • Robert Benedetto; Patrick Ingram; Rafe Jones; Michelle Manes; Joseph H. Silverman; Thomas J. Tucker Current trends and open problems in arithmetic dynamics, Bulletin of the American Mathematical Society. New Series, Volume 56 (2019) no. 4, pp. 611-685 | DOI:10.1090/bull/1665 | Zbl:1468.37001
  • Takahiro Shibata Ample canonical heights for endomorphisms on projective varieties, Journal of the Mathematical Society of Japan, Volume 71 (2019) no. 2, pp. 599-634 | DOI:10.2969/jmsj/79157915 | Zbl:1442.37124
  • Yohsuke Matsuzawa; Kaoru Sano; Takahiro Shibata Arithmetic degrees and dynamical degrees of endomorphisms on surfaces, Algebra Number Theory, Volume 12 (2018) no. 7, pp. 1635-1657 | DOI:10.2140/ant.2018.12.1635 | Zbl:1423.14163
  • Mounir Hajli On the arithmetic of translated monomial maps, Functiones et Approximatio. Commentarii Mathematici, Volume 58 (2018) no. 2, pp. 177-186 | DOI:10.7169/facm/1667 | Zbl:1395.37067
  • Yohsuke Matsuzawa; Kaoru Sano; Takahiro Shibata Arithmetic degrees for dynamical systems over function fields of characteristic zero, Mathematische Zeitschrift, Volume 290 (2018) no. 3-4, pp. 1063-1083 | DOI:10.1007/s00209-018-2053-x | Zbl:1401.37102

Cité par 21 documents. Sources : Crossref, zbMATH