We formulate a generalization of a “refined class number formula” of Darmon. Our conjecture deals with Stickelberger-type elements formed from generalized Stark units, and has two parts: the “order of vanishing” and the “leading term”. Using the theory of Kolyvagin systems we prove a large part of this conjecture when the order of vanishing of the corresponding complex
Nous formulons une généralisation d’une “formule du nombre de classes raffinée” de Darmon. Notre conjecture concerne des éléments de type Stickelberger formés à partir d’unités de Stark généralisées. En utilisant la théorie des systèmes de Kolyvagin, nous démontrons une grande partie de cette conjecture lorsque l’ordre d’annulation de la fonction
Accepté le :
Publié le :
DOI : 10.5802/jtnb.934
Mots-clés : Class number formulas, Euler systems, Kolyvagin systems, Stark conjectures, L-functions.
Barry Mazur 1 ; Karl Rubin 2
@article{JTNB_2016__28_1_185_0, author = {Barry Mazur and Karl Rubin}, title = {Refined class number formulas for $\mathbb{G}_m$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {185--211}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {28}, number = {1}, year = {2016}, doi = {10.5802/jtnb.934}, zbl = {1414.11155}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.934/} }
TY - JOUR AU - Barry Mazur AU - Karl Rubin TI - Refined class number formulas for $\mathbb{G}_m$ JO - Journal de théorie des nombres de Bordeaux PY - 2016 SP - 185 EP - 211 VL - 28 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.934/ DO - 10.5802/jtnb.934 LA - en ID - JTNB_2016__28_1_185_0 ER -
%0 Journal Article %A Barry Mazur %A Karl Rubin %T Refined class number formulas for $\mathbb{G}_m$ %J Journal de théorie des nombres de Bordeaux %D 2016 %P 185-211 %V 28 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.934/ %R 10.5802/jtnb.934 %G en %F JTNB_2016__28_1_185_0
Barry Mazur; Karl Rubin. Refined class number formulas for $\mathbb{G}_m$. Journal de théorie des nombres de Bordeaux, Tome 28 (2016) no. 1, pp. 185-211. doi : 10.5802/jtnb.934. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.934/
[1] D. Burns, « Congruences between derivatives of abelian
[2] K. Büyükboduk, « Kolyvagin systems of Stark units », J. Reine Angew. Math. 631 (2009), p. 85-107. | DOI | MR | Zbl
[3] H. Darmon, « Thaine’s method for circular units and a conjecture of Gross », Canad. J. Math. 47 (1995), no. 2, p. 302-317. | DOI | MR
[4] B. H. Gross.
[5] —, « On the values of abelian
[6] D. R. Hayes, « The refined
[7] B. Mazur & J. Tate, « Refined conjectures of the “Birch and Swinnerton-Dyer type” », Duke Math. J. 54 (1987), no. 2, p. 711-750. | DOI | Zbl
[8] B. Mazur & K. Rubin, « Kolyvagin systems », Mem. Amer. Math. Soc. 168 (2004), no. 799, p. viii+96. | DOI | MR | Zbl
[9] —, « Refined class number formulas and Kolyvagin systems », Compos. Math. 147 (2011), no. 1, p. 56-74. | DOI | MR | Zbl
[10] —, « Controlling Selmer groups in the higher core rank case », J. Théor. Nombres Bordeaux 28 (2016), no. 1, p. 145-183. | DOI | MR | Zbl
[11] B. Perrin-Riou, « Systèmes d’Euler
[12] C. D. Popescu, private communication.
[13] —, « Integral and
[14] K. Rubin, « A Stark conjecture “over
[15] —, Euler systems, Annals of Mathematics Studies, vol. 147, Princeton University Press, Princeton, NJ, 2000, Hermann Weyl Lectures. The Institute for Advanced Study, xii+227 pages.
[16] T. Sano, « A generalization of Darmon’s conjecture for Euler systems for general
[17] —, « A generalization of Darmon’s conjecture for Euler systems for general
[18] J. Tate, Les conjectures de Stark sur les fonctions
- On Derivatives of Kato’s Euler System and the Mazur-Tate Conjecture, International Mathematics Research Notices, Volume 2025 (2025) no. 4 | DOI:10.1093/imrn/rnaf012
- The theory of Kolyvagin systems for p=3, Journal de théorie des nombres de Bordeaux, Volume 36 (2025) no. 3, p. 919 | DOI:10.5802/jtnb.1300
- On Euler systems for motives and Heegner points, Journal of the Association for Mathematical Research, Volume 2 (2024) no. 2, pp. 154-208 | Zbl:7910129
- On derivatives of Kato's Euler system for elliptic curves, Journal of the Mathematical Society of Japan, Volume 76 (2024) no. 3, pp. 855-919 | DOI:10.2969/jmsj/90699069 | Zbl:7918171
- The equivariant Tamagawa number conjecture for abelian extensions of imaginary quadratic fields, Documenta Mathematica, Volume 28 (2023) no. 2, pp. 369-418 | DOI:10.4171/dm/907 | Zbl:1534.11132
- The work of Barry Mazur, International congress of mathematicians 2022, ICM 2022, Helsinki, Finland, virtual, July 6–14, 2022. Volume 1. Prize lectures, Berlin: European Mathematical Society (EMS), 2023, pp. 118-141 | DOI:10.4171/icm2022/217 | Zbl:1536.01017
- On the non-critical exceptional zeros of Katz
-adic -functions for CM fields, Advances in Mathematics, Volume 406 (2022), p. 54 (Id/No 108478) | DOI:10.1016/j.aim.2022.108478 | Zbl:1504.11071 - On Higher Special Elements ofp-adic Representations, International Mathematics Research Notices, Volume 2021 (2021) no. 20, p. 15337 | DOI:10.1093/imrn/rnz378
- Congruences for critical values of higher derivatives of twisted Hasse-Weil
-functions. II, Acta Arithmetica, Volume 195 (2020) no. 4, pp. 327-365 | DOI:10.4064/aa181101-4-12 | Zbl:1468.11152 - On Stark elements of arbitrary weight and their
-adic families, Development of Iwasawa theory – the centennial of K. Iwasawa's birth. Proceedings of the international conference “Iwasawa 2017”, University of Tokyo, Tokyo, Japan, July 19–28, 2017, Tokyo: Mathematical Society of Japan, 2020, pp. 113-140 | DOI:10.2969/aspm/08610113 | Zbl:1469.11458 - Journal für die Reine und Angewandte Mathematik, 762 (2020), pp. 53-104 | DOI:10.1515/crelle-2018-0020 | Zbl:1492.11148
- On Iwasawa theory, zeta elements for
, and the equivariant Tamagawa number conjecture, Algebra Number Theory, Volume 11 (2017) no. 7, pp. 1527-1571 | DOI:10.2140/ant.2017.11.1527 | Zbl:1455.11158 - Controlling Selmer groups in the higher core rank case, Journal de Théorie des Nombres de Bordeaux, Volume 28 (2016) no. 1, pp. 145-183 | DOI:10.5802/jtnb.933 | Zbl:1411.11065
- On a conjecture for Rubin-Stark elements in a special case, Tokyo Journal of Mathematics, Volume 38 (2015) no. 2, pp. 459-476 | DOI:10.3836/tjm/1452806050 | Zbl:1377.11117
- Refined abelian Stark conjectures and the equivariant leading term conjecture of Burns, Compositio Mathematica, Volume 150 (2014) no. 11, pp. 1809-1835 | DOI:10.1112/s0010437x14007416 | Zbl:1311.11108
Cité par 15 documents. Sources : Crossref, zbMATH