From a paper by A. Angelakis and P. Stevenhagen on the determination of a family of imaginary quadratic fields
However we obtain (Theorems 2.1 and 3.1) non-trivial information about the structure of
A partir d’un article de A. Angelakis et P. Stevenhagen sur la détermination d’une famille de corps quadratiques imaginaires
Cependant nous obtenons (Théorèmes 2.1 et 3.1) des informations non triviales sur la structure de
Keywords: Class field theory; Abelian closures of number fields;
Georges Gras 1
@article{JTNB_2014__26_3_635_0,
author = {Georges Gras},
title = {On the structure of the {Galois} group of the {Abelian} closure of a number field},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {635--654},
publisher = {Soci\'et\'e Arithm\'etique de Bordeaux},
volume = {26},
number = {3},
year = {2014},
doi = {10.5802/jtnb.883},
mrnumber = {3320496},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.883/}
}
TY - JOUR AU - Georges Gras TI - On the structure of the Galois group of the Abelian closure of a number field JO - Journal de théorie des nombres de Bordeaux PY - 2014 SP - 635 EP - 654 VL - 26 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.883/ DO - 10.5802/jtnb.883 LA - en ID - JTNB_2014__26_3_635_0 ER -
%0 Journal Article %A Georges Gras %T On the structure of the Galois group of the Abelian closure of a number field %J Journal de théorie des nombres de Bordeaux %D 2014 %P 635-654 %V 26 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.883/ %R 10.5802/jtnb.883 %G en %F JTNB_2014__26_3_635_0
Georges Gras. On the structure of the Galois group of the Abelian closure of a number field. Journal de théorie des nombres de Bordeaux, Tome 26 (2014) no. 3, pp. 635-654. doi : 10.5802/jtnb.883. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.883/
[1] A. Angelakis and P. Stevenhagen, Absolute abelian Galois groups of imaginary quadratic fields, In: proceedings volume of ANTS-X, UC San Diego 2012, E. Howe and K. Kedlaya (eds), OBS 1 (2013).
[2] A. Charifi, Groupes de torsion attachés aux extensions Abéliennes
[3] J. Coates,
[4] G. Gras et J-F. Jaulent, Sur les corps de nombres réguliers, Math. Z. 202, (1989), 3, 343–365. | MR | Zbl
[5] G. Gras, Class Field Theory: from theory to practice, SMM, Springer-Verlag 2003, second corrected printing (2005). | MR | Zbl
[6] G. Gras, Remarks on
[7] G. Gras, Sur les
[8] K. Hatada, Mod 1 distribution of Fermat and Fibonacci quotients and values of zeta functions at
[9] J-F. Jaulent, Théorie
[10] J-F. Jaulent et T. Nguyen Quang Do, Corps
[11] H. Koch, (Parshin, A.N., Šafarevič, I.R., and Gamkrelidze, R.V., Eds.), Number theory II, Algebraic number theory, Encycl. of Math. Sci., vol. 62, Springer-Verlag 1992; second printing: Algebraic Number Theory, Springer-Verlag 1997. | MR | Zbl
[12] T. Kubota, Galois group of the maximal abelian extension of an algebraic number field, Nagoya Math. J. 12, (1957), 177–189. | MR | Zbl
[13] A. Movahhedi et T. Nguyen Quang Do, Sur l’arithmétique des corps de nombres
[14] W. Narkiewicz, Elementary and analytic theory of algebraic numbers, P.W.N. 1974; second revised and extended edition: P.W.N. and Springer-Verlag 1990; third edition: Springer Monographs in Math., Springer-Verlag 2004. | MR | Zbl
[15] M. Onabe, On the isomorphisms of the Galois groups of the maximal Abelian extensions of imaginary quadratic fields, Natur. Sci. Rep. Ochanomizu Univ. 27, (1976), 2, 155–161. | MR | Zbl
[16] Pari/gp, Version 2.5.3, K. Belabas and al., Laboratoire A2X, Université de Bordeaux I.
[17] F. Pitoun and F. Varescon, Computing the torsion of the
[18] J-P. Serre, Sur le résidu de la fonction zêta
Cité par Sources :