Let
When a polynomial satisfies a subset of such conditions the first unsatisfied condition characterizes the Galois group of the normal closure. We derive a complete classification of Eisenstein polynomials of degree
The same methods are used to give a characterization of Eisenstein polynomials of degree
In the last section, we deduce a combinatorial interpretation of monomial symmetric functions evaluated in the roots of the unity, which appear in certain expansions.
Soit
Quand un polynôme satisfait un sous-ensemble de ces conditions, la première condition insatisfaite caractérise le groupe de Galois de la clôture normale. Nous obtenons une classification complète des polynômes d’Eisenstein de degré
Les mêmes méthodes sont utilisées pour donner une caractérisation des polynômes d’Eisenstein de degré
Dans la dernière section, on en déduit une interprétation combinatoire des fonctions symétriques monômiales évaluées aux racines de l’unité, qui apparaissent dans certains développements.
@article{JTNB_2014__26_1_201_0, author = {Maurizio Monge}, title = {A characterization of {Eisenstein} polynomials generating extensions of degree $p^2$ and cyclic of degree $p^3$ over an unramified $\mathfrak{p}$-adic field}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {201--231}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {26}, number = {1}, year = {2014}, doi = {10.5802/jtnb.864}, mrnumber = {3232772}, zbl = {06304186}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.864/} }
TY - JOUR AU - Maurizio Monge TI - A characterization of Eisenstein polynomials generating extensions of degree $p^2$ and cyclic of degree $p^3$ over an unramified $\mathfrak{p}$-adic field JO - Journal de théorie des nombres de Bordeaux PY - 2014 SP - 201 EP - 231 VL - 26 IS - 1 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.864/ DO - 10.5802/jtnb.864 LA - en ID - JTNB_2014__26_1_201_0 ER -
%0 Journal Article %A Maurizio Monge %T A characterization of Eisenstein polynomials generating extensions of degree $p^2$ and cyclic of degree $p^3$ over an unramified $\mathfrak{p}$-adic field %J Journal de théorie des nombres de Bordeaux %D 2014 %P 201-231 %V 26 %N 1 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.864/ %R 10.5802/jtnb.864 %G en %F JTNB_2014__26_1_201_0
Maurizio Monge. A characterization of Eisenstein polynomials generating extensions of degree $p^2$ and cyclic of degree $p^3$ over an unramified $\mathfrak{p}$-adic field. Journal de théorie des nombres de Bordeaux, Tome 26 (2014) no. 1, pp. 201-231. doi : 10.5802/jtnb.864. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.864/
[Cap07] L. Caputo, A classification of the extensions of degree
[FV02] I. B. Fesenko and S. V. Vostokov, Local fields and their extensions. American Mathematical Society, 2002. | MR | Zbl
[GP12] C. Greve and S. Pauli, Ramification polygons, splitting fields, and galois groups of eisenstein polynomials. International Journal of Number Theory 8 (2012), no. 06, 1401–1424. | MR | Zbl
[Kra62] M. Krasner, Nombre des extensions d’un degré donné d’un corps
[Lbe09] A. Lbekkouri, On the construction of normal wildly ramified extensions over
[Mau71] E. Maus, On the jumps in the series of ramifications groups. Bull. Soc. math. France 25 (1971), 127–133. | EuDML | Numdam | MR | Zbl
[Mik81] H. Miki, On the ramification numbers of cyclic p-extensions over local fields. Journal für die Reine und Angewandte Mathematik 328 (1981), 99–115. | EuDML | MR | Zbl
[MP99] J. Montes Peral, Polígonos de newton de orden superior y aplicaciones aritméticas. Ph.D. thesis, Universitat de Barcelona, 1999.
[MS05] J. Mináč and J. Swallow, Galois embedding problems with cyclic quotient of order
[Ore28] Ö. Ore, Newtonsche polygone in der theorie der algebraischen körper. Mathematische Annalen 99 (1928), no. 1, 84–117. | MR
[Wat94] W. C. Waterhouse, The normal closures of certain Kummer extensions. Canad. Math. Bull 37 (1994), no. 1, 133–139. | Zbl
Cité par Sources :