We consider digit expansions
This result is then applied to imaginary quadratic bases, which are used for scalar multiplication in elliptic curve cryptography. Both an algorithmic criterion and generic answers for various cases are given. Imaginary quadratic integers of trace at least
On étudie des systèmes de numération
Ce résultat est ensuite appliqué sur les bases entières quadratiques complexes, qui sont utilisées pour la multiplication par un scalaire dans la cryptographie sur les courbes elliptiques. On présente un critère algorithmique et des réponses génériques pour des cas différents. Des entiers quadratiques complexes de trace au moins
Keywords:
Clemens Heuberger 1 ; Daniel Krenn 2
@article{JTNB_2013__25_2_353_0, author = {Clemens Heuberger and Daniel Krenn}, title = {Optimality of the {Width-}$w$ {Non-adjacent} {Form:} {General} {Characterisation} and the {Case} of {Imaginary} {Quadratic} {Bases}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {353--386}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {25}, number = {2}, year = {2013}, doi = {10.5802/jtnb.840}, mrnumber = {3228312}, zbl = {1282.11005}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.840/} }
TY - JOUR AU - Clemens Heuberger AU - Daniel Krenn TI - Optimality of the Width-$w$ Non-adjacent Form: General Characterisation and the Case of Imaginary Quadratic Bases JO - Journal de théorie des nombres de Bordeaux PY - 2013 SP - 353 EP - 386 VL - 25 IS - 2 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.840/ DO - 10.5802/jtnb.840 LA - en ID - JTNB_2013__25_2_353_0 ER -
%0 Journal Article %A Clemens Heuberger %A Daniel Krenn %T Optimality of the Width-$w$ Non-adjacent Form: General Characterisation and the Case of Imaginary Quadratic Bases %J Journal de théorie des nombres de Bordeaux %D 2013 %P 353-386 %V 25 %N 2 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.840/ %R 10.5802/jtnb.840 %G en %F JTNB_2013__25_2_353_0
Clemens Heuberger; Daniel Krenn. Optimality of the Width-$w$ Non-adjacent Form: General Characterisation and the Case of Imaginary Quadratic Bases. Journal de théorie des nombres de Bordeaux, Tome 25 (2013) no. 2, pp. 353-386. doi : 10.5802/jtnb.840. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.840/
[1] Roberto Avanzi, Clemens Heuberger, and Helmut Prodinger, Minimality of the Hamming weight of the
[2] —, Scalar multiplication on Koblitz curves. Using the Frobenius endomorphism and its combination with point halving: Extensions and mathematical analysis. Algorithmica 46 (2006), 249–270. | MR | Zbl
[3] —, Arithmetic of supersingular Koblitz curves in characteristic three. Tech. Report 2010-8, Graz University of Technology, 2010, http://www.math.tugraz.at/fosp/pdfs/tugraz_0166.pdf, also available as Cryptology ePrint Archive, Report 2010/436, http://eprint.iacr.org/.
[4] Roberto Maria Avanzi, A Note on the Signed Sliding Window Integer Recoding and a Left-to-Right Analogue. Selected Areas in Cryptography: 11th International Workshop, SAC 2004, Waterloo, Canada, August 9-10, 2004, Revised Selected Papers (H. Handschuh and A. Hasan, eds.), Lecture Notes in Comput. Sci., vol. 3357, Springer-Verlag, Berlin, 2004, pp. 130–143. | MR | Zbl
[5] Ian F. Blake, V. Kumar Murty, and Guangwu Xu, Efficient algorithms for Koblitz curves over fields of characteristic three. J. Discrete Algorithms 3 (2005), no. 1, 113–124. | MR | Zbl
[6] —, A note on window
[7] —, Nonadjacent radix-
[8] László Germán and Attila Kovács, On number system constructions. Acta Math. Hungar. 115 (2007), no. 1-2, 155–167. | MR | Zbl
[9] Daniel M. Gordon, A survey of fast exponentiation methods. J. Algorithms 27 (1998), 129–146. | MR | Zbl
[10] Clemens Heuberger, Redundant
[11] Clemens Heuberger and Daniel Krenn, Analysis of width-
[12] Clemens Heuberger and Helmut Prodinger, Analysis of alternative digit sets for nonadjacent representations. Monatsh. Math. 147 (2006), 219–248. | MR | Zbl
[13] Thomas W. Hungerford, Algebra. Graduate Texts in Mathematics, vol. 73, Springer, 1996. | MR | Zbl
[14] Jonathan Jedwab and Chris J. Mitchell, Minimum weight modified signed-digit representations and fast exponentiation. Electron. Lett. 25 (1989), 1171–1172. | Zbl
[15] Donald E. Knuth, Seminumerical algorithms. third ed., The Art of Computer Programming, vol. 2, Addison-Wesley, 1998. | MR | Zbl
[16] Neal Koblitz, CM-curves with good cryptographic properties. Advances in cryptology—CRYPTO ’91 (Santa Barbara, CA, 1991) (J. Feigenbaum, ed.), Lecture Notes in Comput. Sci., vol. 576, Springer, Berlin, 1992, pp. 279–287. | MR | Zbl
[17] —, An elliptic curve implementation of the finite field digital signature algorithm. Advances in cryptology—CRYPTO ’98 (Santa Barbara, CA, 1998), Lecture Notes in Comput. Sci., vol. 1462, Springer, Berlin, 1998, pp. 327–337. | MR
[18] Markus Kröll, Optimality of digital expansions to the base of the Frobenius endomorphism on Koblitz curves in characteristic three. Tech. Report 2010-09, Graz University of Technology, 2010, available athttp://www.math.tugraz.at/fosp/pdfs/tugraz_0167.pdf.
[19] M. Lothaire, Algebraic combinatorics on words. Encyclopedia of Mathematics and its Applications, vol. 90, Cambridge University Press, Cambridge, 2002. | MR | Zbl
[20] Willi Meier and Othmar Staffelbach, Efficient multiplication on certain nonsupersingular elliptic curves. Advances in cryptology—CRYPTO ’92 (Santa Barbara, CA, 1992) (Ernest F. Brickell, ed.), Lecture Notes in Comput. Sci., vol. 740, Springer, Berlin, 1993, pp. 333–344. | MR | Zbl
[21] James A. Muir and Douglas R. Stinson, New minimal weight representations for left-to-right window methods. Topics in Cryptology — CT-RSA 2005 The Cryptographers’ Track at the RSA Conference 2005, San Francisco, CA, USA, February 14–18, 2005, Proceedings (A. J. Menezes, ed.), Lecture Notes in Comput. Sci., vol. 3376, Springer, Berlin, 2005, pp. 366–384. | MR | Zbl
[22] —, Minimality and other properties of the width-
[23] Braden Phillips and Neil Burgess, Minimal weight digit set conversions. IEEE Trans. Comput. 53 (2004), 666–677.
[24] George W. Reitwiesner, Binary arithmetic. Advances in computers, vol. 1, Academic Press, New York, 1960, pp. 231–308. | MR
[25] Jerome A. Solinas, An improved algorithm for arithmetic on a family of elliptic curves. Advances in Cryptology — CRYPTO ’97. 17th annual international cryptology conference. Santa Barbara, CA, USA. August 17–21, 1997. Proceedings (B. S. Kaliski, jun., ed.), Lecture Notes in Comput. Sci., vol. 1294, Springer, Berlin, 1997, pp. 357–371. | Zbl
[26] —, Efficient arithmetic on Koblitz curves. Des. Codes Cryptogr. 19 (2000), 195–249. | MR | Zbl
[27] William A. Stein et al., Sage Mathematics Software (Version 4.7.1). The Sage Development Team, 2011, http://www.sagemath.org.
[28] Christiaan van de Woestijne, The structure of Abelian groups supporting a number system (extended abstract). Actes des rencontres du CIRM 1 (2009), no. 1, 75–79.
Cité par Sources :