The Mordell–Lang conjecture describes the intersection of a finitely generated subgroup with a closed subvariety of a semiabelian variety. Equivalently, this conjecture describes the intersection of closed subvarieties with the set of images of the origin under a finitely generated semigroup of translations. We study the analogous question in which the translations are replaced by algebraic group endomorphisms (and the origin is replaced by another point). We show that the conclusion of the Mordell–Lang conjecture remains true in this setting if either (1) the semiabelian variety is simple, (2) the semiabelian variety is
La conjecture de Mordell-Lang décrit l’intersection d’un sous-groupe de type fini avec une variété fermée d’une variété semi-abélienne. De façon équivalente, cette conjecture décrit l’intersection des sous-variétés fermées avec l’ensemble des images de l’origine sous un semigroupe de translations de type fini. Nous étudions la question analogue dans laquelle les translations sont remplacées par les endomorphismes d’un groupe algébrique (et l’origine est remplacée par un autre point). Nous montrons qui la conclusion de la conjecture de Mordell-Lang reste vraie dans cette situation si, ou bien, (1) la variété semi-abélienne est simple, ou, (2) la variété semi-abélienne est
Keywords:
Dragos Ghioca 1 ; Thomas Tucker 2 ; Michael E. Zieve 3
@article{JTNB_2011__23_3_645_0, author = {Dragos Ghioca and Thomas Tucker and Michael E. Zieve}, title = {The {Mordell{\textendash}Lang} question for endomorphisms of semiabelian varieties}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {645--666}, publisher = {Soci\'et\'e Arithm\'etique de Bordeaux}, volume = {23}, number = {3}, year = {2011}, doi = {10.5802/jtnb.781}, mrnumber = {2861079}, zbl = {1256.14046}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.781/} }
TY - JOUR AU - Dragos Ghioca AU - Thomas Tucker AU - Michael E. Zieve TI - The Mordell–Lang question for endomorphisms of semiabelian varieties JO - Journal de théorie des nombres de Bordeaux PY - 2011 SP - 645 EP - 666 VL - 23 IS - 3 PB - Société Arithmétique de Bordeaux UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.781/ DO - 10.5802/jtnb.781 LA - en ID - JTNB_2011__23_3_645_0 ER -
%0 Journal Article %A Dragos Ghioca %A Thomas Tucker %A Michael E. Zieve %T The Mordell–Lang question for endomorphisms of semiabelian varieties %J Journal de théorie des nombres de Bordeaux %D 2011 %P 645-666 %V 23 %N 3 %I Société Arithmétique de Bordeaux %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.781/ %R 10.5802/jtnb.781 %G en %F JTNB_2011__23_3_645_0
Dragos Ghioca; Thomas Tucker; Michael E. Zieve. The Mordell–Lang question for endomorphisms of semiabelian varieties. Journal de théorie des nombres de Bordeaux, Tome 23 (2011) no. 3, pp. 645-666. doi : 10.5802/jtnb.781. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.781/
[1] J. P. Bell, A generalised Skolem–Mahler–Lech theorem for affine varieties. J. London Math. Soc. (2) 73 (2006), 367–379; corrig. J. London Math. Soc. (2) 78 (2008), 267–272. arXiv: math/0501309. | MR | Zbl
[2] J. Bell, D. Ghioca, and T. J. Tucker, The dynamical Mordell–Lang problem for ètale maps. Amer. J. Math. 132 (2010), 1655–1675. | MR
[3] R. L. Benedetto, D. Ghioca, T. J. Tucker and P. Kurlberg (with an Appendix by U. Zannier), A case of the dynamical Mordell–Lang conjecture. To appear in Math. Ann., arXiv: 0712.2344.
[4] N. Bourbaki, Lie Groups and Lie Algebras. Chapters 1–3, Springer–Verlag, Berlin, 1998. | MR | Zbl
[5] L. Denis, Géométrie et suites récurrentes. Bull. Soc. Math. France 122 (1994), 13–27. | Numdam | MR | Zbl
[6] G. Faltings, The general case of S. Lang’s theorem. In Barsotti symposium in Algebraic Geometry 175–182, Academic Press, San Diego, 1994. | MR | Zbl
[7] D. Ghioca and T. J. Tucker, Periodic points, linearizing maps, and the dynamical Mordell–Lang problem. J. Number Theory, 129 (2009), 1392–1403. | MR | Zbl
[8] D. Ghioca, T. J. Tucker, and M. E. Zieve, Intersections of polynomial orbits, and a dynamical Mordell–Lang theorem. Invent. Math. 171 (2008), 463–483. | MR | Zbl
[9] D. Ghioca, T. J. Tucker, and M. E. Zieve, Linear relations between polynomial orbits. To appear in Duke Mat. J.
[10] S. Iitaka, Logarithmic forms of algebraic varieties. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 23 (1976), 525–544. | MR | Zbl
[11] —, On logarithmic Kodaira dimension of algebraic varieties. In Complex Analysis and Algebraic Geometry Iwanami Shoten, Tokyo (1977), 175–189. | MR
[12] S. Lang, Integral points on curves. Publ. Math. IHES 6 (1960), 27–43. | Numdam | MR | Zbl
[13] C. Lech, A note on recurring series. Ark. Mat. 2 (1953), 417–421. | MR | Zbl
[14] K. Mahler, Eine arithmetische Eigenshaft der Taylor-Koeffizienten. rationaler Funktionen Proc. Kon. Ned. Akad. Wetensch. 38 (1935), 50–60.
[15] M. McQuillan, Division points on semi-abelian varieties. Invent. Math. 120 (1995), 143–159. | MR | Zbl
[16] J. Milne, Abelian varieties. available at www.jmilne.org/math/index.html.
[17] T. Skolem, Ein Verfahren zur Behandlung gewisser exponentialer Gleichungen und diophantischer Gleichungen. In Comptes rendus du 8e congrès des mathématiciens scandinaves (1935), 163–188. | Zbl
[18] P. Vojta, Integral points on subvarieties of semiabelian varieties. I. Invent. Math. 126 (1996), 133–181. | MR | Zbl
- A Mordell-Lang-type problem for
, Bulletin of the Australian Mathematical Society, Volume 111 (2025) no. 3, pp. 433-444 | DOI:10.1017/s0004972724000753 | Zbl:8061407 - The orbit intersection problem in positive characteristic, Acta Arithmetica, Volume 206 (2022) no. 3, pp. 277-290 | DOI:10.4064/aa220917-17-11 | Zbl:1510.37134
- On intersections of polynomial semigroups orbits with plane lines, Canadian Mathematical Bulletin, Volume 64 (2020) no. 2, pp. 442-451 | DOI:10.4153/s0008439520000557 | Zbl:1475.37110
- Unit Equations on Quaternions, The Quarterly Journal of Mathematics, Volume 71 (2020) no. 4, p. 1521 | DOI:10.1093/qmath/haaa043
- On algebraic integers of bounded house and preperiodicity in polynomial semigroup dynamics, Transactions of the American Mathematical Society, Volume 373 (2020) no. 3, pp. 2191-2206 | DOI:10.1090/tran/7974 | Zbl:1460.37086
- Current trends and open problems in arithmetic dynamics, Bulletin of the American Mathematical Society. New Series, Volume 56 (2019) no. 4, pp. 611-685 | DOI:10.1090/bull/1665 | Zbl:1468.37001
- Integral points and relative sizes of coordinates of orbits in
, Mathematische Zeitschrift, Volume 279 (2015) no. 3-4, pp. 1121-1141 | DOI:10.1007/s00209-015-1406-y | Zbl:1320.37046 - Integer points in arithmetic sequences, Bulletin of the Institute of Mathematics. Academia Sinica. New Series, Volume 9 (2014) no. 4, pp. 633-640 | Zbl:1308.14026
- Exponential-Polynomial Equations and Dynamical Return Sets, International Mathematics Research Notices, Volume 2014 (2014) no. 16, p. 4357 | DOI:10.1093/imrn/rnt081
- Periods of rational maps modulo primes, Mathematische Annalen, Volume 355 (2013) no. 2, pp. 637-660 | DOI:10.1007/s00208-012-0799-8 | Zbl:1317.37111
- Linear relations between polynomial orbits, Duke Mathematical Journal, Volume 161 (2012) no. 7, pp. 1379-1410 | DOI:10.1215/00127094-1598098 | Zbl:1267.37043
- A case of the dynamical Mordell-Lang conjecture, Mathematische Annalen, Volume 352 (2012) no. 1, pp. 1-26 | DOI:10.1007/s00208-010-0621-4 | Zbl:1285.37021
- Intersections of polynomial orbits, and a dynamical Mordell-Lang conjecture, Inventiones Mathematicae, Volume 171 (2008) no. 2, pp. 463-483 | DOI:10.1007/s00222-007-0087-5 | Zbl:1191.14027
Cité par 13 documents. Sources : Crossref, zbMATH