A local analogue of the Grothendieck Conjecture is an equivalence between the category of complete discrete valuation fields
L’analogue local de la conjecture de Grothendieck peut être formulé comme une équivalence entre la catégorie des corps
@article{JTNB_2010__22_1_1_0, author = {Victor Abrashkin}, title = {Modified proof of a local analogue of the {Grothendieck} conjecture}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {1--50}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {1}, year = {2010}, doi = {10.5802/jtnb.703}, mrnumber = {2675872}, zbl = {1229.11148}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.703/} }
TY - JOUR AU - Victor Abrashkin TI - Modified proof of a local analogue of the Grothendieck conjecture JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 1 EP - 50 VL - 22 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.703/ DO - 10.5802/jtnb.703 LA - en ID - JTNB_2010__22_1_1_0 ER -
%0 Journal Article %A Victor Abrashkin %T Modified proof of a local analogue of the Grothendieck conjecture %J Journal de théorie des nombres de Bordeaux %D 2010 %P 1-50 %V 22 %N 1 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.703/ %R 10.5802/jtnb.703 %G en %F JTNB_2010__22_1_1_0
Victor Abrashkin. Modified proof of a local analogue of the Grothendieck conjecture. Journal de théorie des nombres de Bordeaux, Tome 22 (2010) no. 1, pp. 1-50. doi : 10.5802/jtnb.703. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.703/
[1] V.A. Abrashkin, Ramification filtration of the Galois group of a local field. II. Proceeding of Steklov Math. Inst. 208 (1995), 18–69. | MR | Zbl
[2] V.A. Abrashkin, Ramification filtration of the Galois group of a local field. III. Izvestiya RAN, ser. math. 62 (1998), 3–48. | MR | Zbl
[3] V.A. Abrashkin, A local analogue of the Grothendieck conjecture. Int. J. of Math. 11 (2000), 3–43. | MR | Zbl
[4] P. Berthelot, W. Messing, Théorie de Deudonné Cristalline III: Théorèmes d’Équivalence et de Pleine Fidélité. The Grotendieck Festschrift. A Collection of Articles Written in Honor of 60th Birthday of Alexander Grothendieck, volume 1, eds P.Cartier etc. Birkhauser, 1990, 173–247. | MR | Zbl
[5] J.-M. Fontaine, Representations
[6] K. Iwasawa, Local class field theory. Oxford University Press, 1986 | MR | Zbl
[7] Sh.Mochizuki, A version of the Grothendieck conjecture for
[8] J.-P.Serre, Lie algebras and Lie groups. Lectures given at Harvard University. New-York-Amsterdam, Bevjamin, 1965. | MR | Zbl
[9] I.R. Shafarevich. A general reciprocity law (In Russian). Mat. Sbornik 26 (1950), 113–146; Engl. transl. in Amer. Math. Soc. Transl. Ser. 2, volume 2 (1956), 59–72. | MR | Zbl
[10] J.-P. Wintenberger, Extensions abéliennes et groupes d’automorphismes de corps locaux, C. R. Acad. Sc. Paris, Série A 290 (1980), 201–203. | MR | Zbl
[11] J.-P. Wintenberger, Le corps des normes de certaines extensions infinies des corps locaux; application. Ann. Sci. Ec. Norm. Super., IV. Ser 16 (1983), 59–89. | Numdam | MR | Zbl
- Galois groups of
-extensions of higher local fields, Journal de Théorie des Nombres de Bordeaux, Volume 36 (2024) no. 2, pp. 671-724 | DOI:10.5802/jtnb.1293 | Zbl:7948982 - A study on anabelian geometry of higher local fields, International Journal of Number Theory, Volume 19 (2023) no. 6, pp. 1229-1248 | DOI:10.1142/s1793042123500604 | Zbl:1524.11213
- Ramification filtration via deformations, Sbornik: Mathematics, Volume 212 (2021) no. 2, pp. 135-169 | DOI:10.1070/sm9322 | Zbl:1472.11289
- Фильтрация ветвления и деформации, Математический сборник, Volume 212 (2021) no. 2, p. 3 | DOI:10.4213/sm9322
- Two categorical characterizations of local fields, Hiroshima Mathematical Journal, Volume 48 (2018) no. 3, pp. 253-277 | DOI:10.32917/hmj/1544238027 | Zbl:1409.14005
- Groups of automorphisms of local fields of period
and nilpotent class \(, Annales de l'Institut Fourier, Volume 67 (2017) no. 2, pp. 605-635 | DOI:10.5802/aif.3093 | Zbl:1437.11156
- Groups of automorphisms of local fields of period
and nilpotent class \(, International Journal of Mathematics, Volume 28 (2017) no. 6, p. 34 (Id/No 1750043) | DOI:10.1142/s0129167x17500434 | Zbl:1409.11102
- Hecke algebras for
over local fields, Archiv der Mathematik, Volume 107 (2016) no. 4, pp. 341-353 | DOI:10.1007/s00013-016-0974-3 | Zbl:1466.20005 - Ramification of higher local fields, approaches and questions, St. Petersburg Mathematical Journal, Volume 26 (2015) no. 5, pp. 695-740 | DOI:10.1090/spmj/1355 | Zbl:1369.11079
Cité par 9 documents. Sources : Crossref, zbMATH