For the cyclotomic
Pour
@article{JTNB_2010__22_1_115_0, author = {Yasushi Mizusawa}, title = {On the maximal unramified pro-2-extension over the cyclotomic $\mathbb{Z}_2$-extension of an imaginary quadratic field}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {115--138}, publisher = {Universit\'e Bordeaux 1}, volume = {22}, number = {1}, year = {2010}, doi = {10.5802/jtnb.707}, mrnumber = {2675876}, zbl = {1221.11215}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.707/} }
TY - JOUR AU - Yasushi Mizusawa TI - On the maximal unramified pro-2-extension over the cyclotomic $\mathbb{Z}_2$-extension of an imaginary quadratic field JO - Journal de théorie des nombres de Bordeaux PY - 2010 SP - 115 EP - 138 VL - 22 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.707/ DO - 10.5802/jtnb.707 LA - en ID - JTNB_2010__22_1_115_0 ER -
%0 Journal Article %A Yasushi Mizusawa %T On the maximal unramified pro-2-extension over the cyclotomic $\mathbb{Z}_2$-extension of an imaginary quadratic field %J Journal de théorie des nombres de Bordeaux %D 2010 %P 115-138 %V 22 %N 1 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.707/ %R 10.5802/jtnb.707 %G en %F JTNB_2010__22_1_115_0
Yasushi Mizusawa. On the maximal unramified pro-2-extension over the cyclotomic $\mathbb{Z}_2$-extension of an imaginary quadratic field. Journal de théorie des nombres de Bordeaux, Tome 22 (2010) no. 1, pp. 115-138. doi : 10.5802/jtnb.707. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.707/
[1] E. Benjamin, F. Lemmermeyer and C. Snyder, Imaginary quadratic fields
[2] E. Benjamin, F. Lemmermeyer and C. Snyder, Real quadratic fields with abelian
[3] E. Benjamin, F. Lemmermeyer and C. Snyder, Imaginary quadratic fields
[4] E. Benjamin, F. Lemmermeyer and C. Snyder, Imaginary quadratic fields with
[5] N. Boston, Galois groups of tamely ramified
[6] M. R. Bush, Computation of Galois groups associated to the
[7] J. D. Dixon, M. P. F. du Sautoy, A. Mann and D. Segal, Analytic pro-
[8] B. Ferrero, The cyclotomic
[9] B. Ferrero and L. C. Washington, The Iwasawa invariant
[10] S. Fujii, On a higher class number formula of
[11] S. Fujii, Non-abelian Iwasawa theory of cyclotomic
[12] S. Fujii and K. Okano, Some problems on
[13] E. S. Golod and I. R. Shafarevich, On the class field tower. Izv. Akad. Nauk SSSR Ser. Mat. 28 (1964), 261–272. | MR | Zbl
[14] R. Greenberg, On the Iwasawa invariants of totally real number fields. Amer. J. Math. 98 (1976), no. 1, 263–284. | MR | Zbl
[15] F. Hajir, On a theorem of Koch. Pacific J. Math. 176 (1996), no. 1, 15–18. Correction: 196 (2000), no. 2, 507–508. | MR
[16] H. Ichimura and H. Sumida, On the Iwasawa invariants of certain real abelian fields II. Inter. J. Math. 7 (1996), no. 6, 721–744. | MR | Zbl
[17] T. Itoh, Pseudo-null Iwasawa modules for
[18] K. Iwasawa, On
[19] Y. Kida, On cyclotomic
[20] Y. Kida, Cyclotomic
[21] H. Kisilevsky, Number fields with class number congruent to
[22] M. Lazard, Groupes analytiques
[23] F. Lemmermeyer, On
[24] F. Lemmermeyer, Ideal class groups of cyclotomic number fields I. Acta Arith. 72 (1995), no. 4, 347–359. | MR | Zbl
[25] B. Mazur and A. Wiles, Class fields of abelian extensions of
[26] Y. Mizusawa, On the maximal unramified pro-
[27] Y. Mizusawa and M. Ozaki, Abelian
[28] K. Okano, Abelian
[29] M. Ozaki, Non-Abelian Iwasawa theory of
[30] M. Ozaki, Non-Abelian Iwasawa theory of
[31] M. Ozaki and H. Taya, On the Iwasawa
[32] J.-P. Serre, Galois cohomology. Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2002. | MR | Zbl
[33] R. T. Sharifi, On Galois groups of unramified pro-
[34] L. C. Washington, Introduction to Cyclotomic Fields (2nd edition). Graduate Texts in Math. vol. 83, Springer, 1997. | MR | Zbl
[35] A. Wiles, The Iwasawa conjecture for totally real fields. Ann. of Math. (2) 131 (1990), no. 3, 493–540. | MR | Zbl
[36] K. Wingberg, On the Fontaine-Mazur conjecture for CM-fields. Compositio Math. 131 (2002), no. 3, 341–354. | MR | Zbl
[37] Y. Yamamoto, Divisibility by
[38] K. Yamamura, Maximal unramified extensions of imaginary quadratic number fields of small conductors. J. Théor. Nombres Bordeaux 9 (1997), no. 2, 405–448. | Numdam | MR | Zbl
Cité par Sources :