In this article we show that the Bounded Height Conjecture is optimal in the sense that, if
Nous démontrons que la “conjecture de hauteur bornée” est optimale dans le sens suivant. Soit
Keywords: Height, Elliptic curves, Subvarieties
Evelina Viada 1
@article{JTNB_2009__21_3_771_0, author = {Evelina Viada}, title = {The optimality of the {Bounded} {Height} {Conjecture}}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {771--786}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {3}, year = {2009}, doi = {10.5802/jtnb.702}, mrnumber = {2605547}, zbl = {1203.11048}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.702/} }
TY - JOUR AU - Evelina Viada TI - The optimality of the Bounded Height Conjecture JO - Journal de théorie des nombres de Bordeaux PY - 2009 SP - 771 EP - 786 VL - 21 IS - 3 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.702/ DO - 10.5802/jtnb.702 LA - en ID - JTNB_2009__21_3_771_0 ER -
%0 Journal Article %A Evelina Viada %T The optimality of the Bounded Height Conjecture %J Journal de théorie des nombres de Bordeaux %D 2009 %P 771-786 %V 21 %N 3 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.702/ %R 10.5802/jtnb.702 %G en %F JTNB_2009__21_3_771_0
Evelina Viada. The optimality of the Bounded Height Conjecture. Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 3, pp. 771-786. doi : 10.5802/jtnb.702. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.702/
[1] E. Bombieri, D. Masser and U. Zannier, Intersecting a curve with algebraic subgroups of multiplicative groups. Int. Math. Res. Not. 20 (1999), 1119–1140. | MR | Zbl
[2] E. Bombieri, D. Masser and U. Zannier, Anomalous subvarieties - Structure Theorem and applications. Int. Math. Res. Not. 19 (2007), 33 pages. | MR | Zbl
[3] P. Habegger, Bounded height for subvarieties in abelian varieties. Invent. math. 176 (2009), 405–447. | Zbl
[4] G. Rémond, Intersection de sous-groupes et de sous-variétés II. J. Inst. Math. Jussieu 6 (2007), 317–348. | MR | Zbl
[5] G. Rémond, Intersection de sous-groups et de sous-variétés III. To appear in Com. Mat. Helv. | MR
[6] G. Rémond and E. Viada, Problème de Mordell-Lang modulo certaines sous-variétés abéliennes. Int. Math. Res. Not. 35 (2003), 1915–1931. | MR | Zbl
[7] E. Viada, The intersection of a curve with algebraic subgroups in a product of elliptic curves. Ann. Scuola Norm. Sup. Pisa cl. Sci. 5 vol. II (2003), 47–75. | Numdam | MR | Zbl
[8] E. Viada, The intersection of a curve with a union of translated codimension-two subgroups in a power of an elliptic curve, Algebra and Number Theory 3 vol. 2 (2008), 248–298. | MR | Zbl
[9] E. Viada, Non-dense subsets of varieties in a power of an elliptic curve. Int. Math. Res. Not. 7 (2009), 1214–1246. | MR | Zbl
Cité par Sources :