Let
A theorem of Gao, generalizing an older result of Olson, says that if
Soit
Un théorème de Gao, généralisant un résultat plus ancien d’Olson, dit que si
Keywords: zero-sum problem, Davenport constant, weighted subsequence sums, setpartition,
David J. Grynkiewicz 1 ; Luz E. Marchan 2 ; Oscar Ordaz 3
@article{JTNB_2009__21_3_559_0, author = {David J. Grynkiewicz and Luz E. Marchan and Oscar Ordaz}, title = {Representation of finite abelian group elements by subsequence sums}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {559--587}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {3}, year = {2009}, doi = {10.5802/jtnb.689}, mrnumber = {2605534}, zbl = {1214.11034}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.689/} }
TY - JOUR AU - David J. Grynkiewicz AU - Luz E. Marchan AU - Oscar Ordaz TI - Representation of finite abelian group elements by subsequence sums JO - Journal de théorie des nombres de Bordeaux PY - 2009 SP - 559 EP - 587 VL - 21 IS - 3 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.689/ DO - 10.5802/jtnb.689 LA - en ID - JTNB_2009__21_3_559_0 ER -
%0 Journal Article %A David J. Grynkiewicz %A Luz E. Marchan %A Oscar Ordaz %T Representation of finite abelian group elements by subsequence sums %J Journal de théorie des nombres de Bordeaux %D 2009 %P 559-587 %V 21 %N 3 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.689/ %R 10.5802/jtnb.689 %G en %F JTNB_2009__21_3_559_0
David J. Grynkiewicz; Luz E. Marchan; Oscar Ordaz. Representation of finite abelian group elements by subsequence sums. Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 3, pp. 559-587. doi : 10.5802/jtnb.689. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.689/
[1] Sukumar das Adhikari and Purusottam Rath, Davenport constant with weights and some related questions. Integers 6 (2006), A30, 6 pp (electronic). | MR | Zbl
[2] Sukumar das Adhikari and Yong-Gao Chen, Davenport constant with weights and some related questions II. J. Combin. Theory Ser. A 115 (2008), no. 1, 178–184. | MR
[3] N. Alon, A. Bialostocki and Y. Caro, The extremal cases in the Erdős-Ginzburg-Ziv Theorem. Unpublished.
[4] A. Bialostocki, P. Dierker, D. J. Grynkiewicz, and M. Lotspeich, On Some Developments of the Erdős-Ginzburg-Ziv Theorem II. Acta Arith. 110 (2003), no. 2, 173–184. | MR | Zbl
[5] Y. Caro, Zero-sum problems—a survey. Discrete Math. 152 (1996), no. 1–3, 93–113. | MR | Zbl
[6] P. Erdős, A. Ginzburg and A. Ziv, Theorem in Additive Number Theory. Bull. Res. Council Israel 10F (1961), 41–43. | Zbl
[7] W. Gao, Addition theorems for finite abelian groups. J. Number Theory 53 (1995), 241–246. | MR | Zbl
[8] W. Gao and A. Geroldinger, On Long Minimal Zero Sequences in Finite Abelian Groups. Periodica Math. Hungar. 38 (1999), no. 3, 179–211. | MR | Zbl
[9] W. Gao and A. Geroldinger, Zero-sum problems in finite abelian groups: A survey. Expositiones Mathematicae, 24 (2006), no. 4, 337–369. | MR | Zbl
[10] W. Gao and W. Jin, Weighted sums in finite cyclic groups. Discrete Math. 283 (2004), no. 1-3, 243–247. | MR | Zbl
[11] A. Geroldinger and F. Halter-Koch, Non-unique factorizations: Algebraic, combinatorial and analytic theory. Pure and Applied Mathematics (Boca Raton) 278. Chapman & Hall/CRC, Boca Raton, FL, 2006. | MR | Zbl
[12] A. Geroldinger and R. Schneider, On Davenport’s Constant. J. Combin. Theory, Ser. A 61 (1992), no. 1, 147–152. | MR | Zbl
[13] S. Griffiths, The Erdős-Ginzberg-Ziv theorem with units. To appear in Discrete math. | MR
[14] D. J. Grynkiewicz, A Weighted Erdős-Ginzburg-Ziv Theorem. Combinatorica 26 (2006), no. 4, 445–453. | MR | Zbl
[15] D. J. Grynkiewicz, Quasi-periodic Decompositions and the Kemperman Structure Theorem, European J. Combin. 26 (2005), no. 5, 559–575. | MR | Zbl
[16] D. J. Grynkiewicz, On a Partition Analog of the Cauchy-Davenport Theorem. Acta Math. Hungar. 107 (2005), no. 1–2, 161–174. | MR | Zbl
[17] D. J. Grynkiewicz, On a conjecture of Hamidoune for subsequence sum., Integers 5 (2005), no. 2, A7, 11 pp. (electronic). | MR | Zbl
[18] D. J. Grynkiewicz and R. Sabar, Monochromatic and zero-sum sets of nondecreasing modified diameter. Electron. J. Combin. 13 (2006), no. 1, Research Paper 28, 19 pp. (electronic). | MR | Zbl
[19] D. J. Grynkiewicz, Sumsets, Zero-sums and Extremal Combinatorics. Ph. D. Dissertation, Caltech (2005).
[20] D. J. Grynkiewicz, A Step Beyond Kemperman’s Stucture Theorem. Preprint (2007). | MR
[21] Y. O. Hamidoune and A. Plagne, A new critical pair theorem applied to sum-free sets in abelian groups. Comment. Math. Helv. 79 (2004), no. 1, 183–207. | MR | Zbl
[22] Y. O. Hamidoune, On weighted sequence sums. Comb. Prob. Comput. 4 (1995), 363–367. | MR | Zbl
[23] Y. O. Hamidoune, On weighted sums in abelian groups. Discrete Math. 162 (1996), 127–132. | MR | Zbl
[24] T. Hungerford, Algebra. Springer-Verlag, New York, 1974. | MR | Zbl
[25] J. H. B. Kemperman, On Small Sumsets in an Abelian Group. Acta Math. 103 (1960), 63–88. | MR | Zbl
[26] M. Kneser, Abschätzung der asymptotischen Dichte von Summenmengen. Math. Z. 58 (1953), 459–484. | MR | Zbl
[27] M. Kneser, Ein Satz über abelsche Gruppen mit Anwendungen auf die Geometrie der Zahlen. Math. Z. 64 (1955), 429–434. | MR | Zbl
[28] S. Lang, Algebra. Third edition, Yale University, New Haven, CT, 1993.
[29] V. Lev, Critical pairs in abelian groups and Kemperman’s structure theorem. Int. J. Number Theory 2 (2006), no. 3, 379–396. | MR | Zbl
[30] M. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets. Graduate Texts in Mathematics 165, Springer-Verlag, New York, 1996. | MR | Zbl
[31] J. E. Olson, An addition theorem for finite abelian groups. J. Number Theory 9 (1977), no. 1, 63–70. | MR | Zbl
[32] O. Ordaz and D. Quiroz, Representation of group elements as subsequences sums. Discrete Mathematics 308 (2008), no. 15, 3315–3321. | MR | Zbl
[33] T. Tao and V. Vu, Additive Combinatorics. Cambridge Studies in Advanced Mathematics 105, Cambridge University Press, Cambridge, 2006. | MR | Zbl
- The Directed Cayley Diameter and the Davenport Constant, Recent Progress in Ring and Factorization Theory, Volume 477 (2025), p. 1 | DOI:10.1007/978-3-031-75326-8_1
- On the zero-sum subsequences of modular restricted lengths, Discrete Mathematics, Volume 347 (2024) no. 6, p. 19 (Id/No 113967) | DOI:10.1016/j.disc.2024.113967 | Zbl:1542.11018
- On the number of weighted zero-sum subsequences, Periodica Mathematica Hungarica, Volume 87 (2023) no. 2, pp. 366-373 | DOI:10.1007/s10998-023-00533-6 | Zbl:1538.11076
- Iterated sumsets and setpartitions, The Ramanujan Journal, Volume 52 (2020) no. 3, pp. 499-518 | DOI:10.1007/s11139-019-00155-y | Zbl:1477.11018
- On the number of fully weighted zero-sum subsequences, International Journal of Number Theory, Volume 15 (2019) no. 5, pp. 1051-1057 | DOI:10.1142/s179304211950057x | Zbl:1459.11073
- Iterated sumsets and Olson's generalization of the Erdős-Ginzburg-Ziv theorem, Discrete mathematics days 2018. Extended abstracts of the 11th “Jornadas de matemática discreta y algorítmica” (JMDA), Sevilla, Spain, June 27–29, 2018, Amsterdam: Elsevier, 2018, pp. 29-34 | DOI:10.1016/j.endm.2018.06.006 | Zbl:1437.11028
- Iterated sumsets and subsequence sums, Journal of Combinatorial Theory. Series A, Volume 160 (2018), pp. 136-167 | DOI:10.1016/j.jcta.2018.06.003 | Zbl:1451.11107
- Degree bound for separating invariants of abelian groups, Proceedings of the American Mathematical Society, Volume 145 (2017) no. 9, pp. 3695-3708 | DOI:10.1090/proc/13534 | Zbl:1372.13004
- On
-sums in an abelian group, Combinatorics, Probability and Computing, Volume 25 (2016) no. 3, pp. 419-435 | DOI:10.1017/s0963548315000255 | Zbl:1372.11031 - Products of two atoms in Krull monoids and arithmetical characterizations of class groups., European Journal of Combinatorics, Volume 34 (2013) no. 8, pp. 1244-1268 | DOI:10.1016/j.ejc.2013.05.008 | Zbl:1309.20050
- Arithmetic-progression-weighted subsequence sums, Israel Journal of Mathematics, Volume 193 (2013), pp. 359-398 | DOI:10.1007/s11856-012-0119-8 | Zbl:1316.11010
- The Partition Theorem II, Structural Additive Theory, Volume 30 (2013), p. 229 | DOI:10.1007/978-3-319-00416-7_15
- A weighted generalization of two theorems of Gao, The Ramanujan Journal, Volume 28 (2012) no. 3, pp. 323-340 | DOI:10.1007/s11139-011-9350-x | Zbl:1320.11019
- Note on a conjecture of Graham, European Journal of Combinatorics, Volume 32 (2011) no. 8, pp. 1336-1344 | DOI:10.1016/j.ejc.2011.06.004 | Zbl:1262.11007
- Normal sequences over finite abelian groups, Journal of Combinatorial Theory. Series A, Volume 118 (2011) no. 4, pp. 1519-1524 | DOI:10.1016/j.jcta.2010.11.009 | Zbl:1243.11014
Cité par 15 documents. Sources : Crossref, zbMATH