Étant donné un nombre premier impair, on caractérise les partitions de à parts positives ou nulles pour lesquelles il existe des permutations de l’ensemble telles que divise mais ne divise pas . Cela se produit si et seulement si le nombre maximal de parts égales de est strictement inférieur à . Cette question est apparue en manipulant des sommes de puissances -ièmes de résolvantes, en lien avec un problème de structure galoisienne.
Given an odd prime number , we characterize the partitions of with non negative parts for which there exist permutations of the set such that divides but does not divide . This happens if and only if the maximal number of equal parts of is less than . The question appeared when dealing with sums of -th powers of resolvents, in order to solve a Galois module structure problem.
DOI : https://doi.org/10.5802/jtnb.682
Mots clés : Partitions of a prime; sums of resolvents; multinomials.
@article{JTNB_2009__21_2_455_0, author = {St\'ephane Vinatier}, title = {Permuting the partitions of a prime}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {455--465}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {2}, year = {2009}, doi = {10.5802/jtnb.682}, zbl = {pre05620662}, mrnumber = {2541437}, language = {en}, url = {jtnb.centre-mersenne.org/item/JTNB_2009__21_2_455_0/} }
Stéphane Vinatier. Permuting the partitions of a prime. Journal de Théorie des Nombres de Bordeaux, Tome 21 (2009) no. 2, pp. 455-465. doi : 10.5802/jtnb.682. https://jtnb.centre-mersenne.org/item/JTNB_2009__21_2_455_0/
[A] Andrews G.E., The theory of partitions. Encyclopedia of Mathematics and its applications 2, Addison-Wesley, 1976. | MR 557013 | Zbl 0655.10001
[DM] Dixon J.D., Mortimer B., Permutation groups. Graduate Texts in Mathematics 163, Springer-Verlag, New York, 1996. | MR 1409812 | Zbl 0951.20001
[V] Vinatier S., Galois module structure in wealky ramified -extensions. Acta Arithm. 119 (2005), no. 2, 171–186. | MR 2167720 | Zbl 1075.11071