We prove formulas for the generating functions for
Nous prouvons des formules pour les fonctions génératrices des différences de rang
@article{JTNB_2009__21_2_313_0, author = {Jeremy Lovejoy and Robert Osburn}, title = {$M_2$-rank differences for partitions without repeated odd parts}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {313--334}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {2}, year = {2009}, doi = {10.5802/jtnb.673}, mrnumber = {2541428}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.673/} }
TY - JOUR AU - Jeremy Lovejoy AU - Robert Osburn TI - $M_2$-rank differences for partitions without repeated odd parts JO - Journal de théorie des nombres de Bordeaux PY - 2009 SP - 313 EP - 334 VL - 21 IS - 2 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.673/ DO - 10.5802/jtnb.673 LA - en ID - JTNB_2009__21_2_313_0 ER -
%0 Journal Article %A Jeremy Lovejoy %A Robert Osburn %T $M_2$-rank differences for partitions without repeated odd parts %J Journal de théorie des nombres de Bordeaux %D 2009 %P 313-334 %V 21 %N 2 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.673/ %R 10.5802/jtnb.673 %G en %F JTNB_2009__21_2_313_0
Jeremy Lovejoy; Robert Osburn. $M_2$-rank differences for partitions without repeated odd parts. Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 2, pp. 313-334. doi : 10.5802/jtnb.673. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.673/
[1] G. E. Andrews, A generalization of the Göllnitz-Gordon partition theorems. Proc. Amer. Math. Soc. 8 (1967), 945–952. | MR | Zbl
[2] G.E. Andrews, Two theorems of Gauss and allied identities proven arithmetically. Pacific J. Math. 41 (1972), 563–578. | MR | Zbl
[3] G.E. Andrews, The Mordell integrals and Ramanujan’s “lost” notebook. In: Analytic Numbere Theory, Lecture Notes in Mathematics 899. Springer-Verlag, New York, 1981, pp. 10–48. | MR | Zbl
[4] G.E. Andrews, Partitions, Durfee symbols, and the Atkin-Garvan moments of ranks. Invent. Math. 169 (2007), 37–73. | MR
[5] G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook, Part I. Springer, New York, 2005. | Zbl
[6] A.O.L. Atkin and H. Swinnerton-Dyer, Some properties of partitions. Proc. London Math. Soc. 66 (1954), 84–106. | MR | Zbl
[7] A.O.L. Atkin and S.M. Hussain, Some properties of partitions. II. Trans. Amer. Math. Soc. 89 (1958), 184–200. | MR | Zbl
[8] A. Berkovich and F. G. Garvan, Some observations on Dyson’s new symmetries of partitions. J. Combin. Theory, Ser. A 100 (2002), 61–93. | MR | Zbl
[9] K. Bringmann, K. Ono, and R. Rhoades, Eulerian series as modular forms. J. Amer. Math. Soc. 21 (2008), 1085–1104. | MR
[10] S.H. Chan, Generalized Lambert series identities. Proc. London Math. Soc. 91 (2005), 598–622. | MR | Zbl
[11] S. Corteel and O. Mallet, Overpartitions, lattice paths, and Rogers-Ramanujan identities. J. Combin. Theory Ser. A 114 (2007), 1407–1437. | MR | Zbl
[12] F.G. Garvan, Generalizations of Dyson’s rank and non-Rogers-Ramanujan partitions. Manuscripta Math. 84 (1994), 343–359. | MR | Zbl
[13] G. Gasper and M. Rahman, Basic Hypergeometric Series. Cambridge Univ. Press, Cambridge, 1990. | MR | Zbl
[14] B. Gordon and R.J. McIntosh, Some eighth order mock theta functions. J. London Math. Soc. 62 (2000), 321–335. | MR | Zbl
[15] D. Hickerson, A proof of the mock theta conjectures. Invent. Math. 94 (1988), 639–660. | MR | Zbl
[16] J. Lovejoy, Rank and conjugation for a second Frobenius representation of an overpartition. Ann. Comb. 12 (2008), 101–113. | MR | Zbl
[17] J. Lovejoy and R. Osburn, Rank differences for overpartitions. Quart. J. Math. (Oxford) 59 (2008), 257–273. | MR | Zbl
[18] P.A. MacMahon, The theory of modular partitions. Proc. Cambridge Phil. Soc. 21 (1923), 197–204.
[19] R.J. McIntosh, Second order mock theta functions. Canad. Math. Bull. 50 (2) (2007), 284–290. | MR | Zbl
- Sequences of odd length in strict partitions. II: The 2-measure and refinements of Euler's theorem, The Ramanujan Journal, Volume 68 (2025) no. 1, p. 20 (Id/No 10) | DOI:10.1007/s11139-025-01166-8 | Zbl:8087415
- Combinatorial interpretations of cranks of overpartitions and partitions without repeated odd parts, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, Volume 20 (2024), p. paper | DOI:10.3842/sigma.2024.097 | Zbl:7951891
- Inequalities for the
-rank modulo 12 of partitions without repeated odd parts, The Ramanujan Journal, Volume 63 (2024) no. 1, pp. 105-130 | DOI:10.1007/s11139-023-00783-5 | Zbl:1555.11159 - Generalizations of mock theta functions and Appell-Lerch sums, Bulletin of the Iranian Mathematical Society, Volume 49 (2023) no. 5, p. 17 (Id/No 71) | DOI:10.1007/s41980-023-00817-0 | Zbl:1539.33013
- Generalizations of mock theta functions and radial limits, Proceedings of the American Mathematical Society, Volume 151 (2023) no. 8, pp. 3317-3329 | DOI:10.1090/proc/16368 | Zbl:1515.11020
- On total number parts functions associated to ranks of overpartitions, Journal of Mathematical Analysis and Applications, Volume 506 (2022) no. 2, p. 16 (Id/No 125715) | DOI:10.1016/j.jmaa.2021.125715 | Zbl:1483.11234
- Three-parameter mock theta functions, Journal of Mathematical Analysis and Applications, Volume 515 (2022) no. 2, p. 22 (Id/No 126459) | DOI:10.1016/j.jmaa.2022.126459 | Zbl:1491.11048
- Identities and inequalities for the
-rank of partitions without repeated odd parts modulo 8, The Ramanujan Journal, Volume 58 (2022) no. 4, pp. 1259-1284 | DOI:10.1007/s11139-021-00486-9 | Zbl:1501.11095 - On the number of equivalence classes arising from partition involutions. II, Discrete Mathematics, Volume 344 (2021) no. 7, p. 13 (Id/No 112410) | DOI:10.1016/j.disc.2021.112410 | Zbl:1473.11189
- Variations of Andrews-Beck type congruences, Journal of Mathematical Analysis and Applications, Volume 495 (2021) no. 2, p. 14 (Id/No 124771) | DOI:10.1016/j.jmaa.2020.124771 | Zbl:1464.11106
- Asymptotic formulas related to the
-rank of partitions without repeated odd parts, The Ramanujan Journal, Volume 52 (2020) no. 1, pp. 175-242 | DOI:10.1007/s11139-019-00147-y | Zbl:1445.11117 - Unimodal sequence generating functions arising from partition ranks, Research in Number Theory, Volume 5 (2019) no. 3, p. 17 (Id/No 25) | DOI:10.1007/s40993-019-0164-z | Zbl:1416.05016
- The generating function of the
-rank of partitions without repeated odd parts as a mock modular form, Transactions of the American Mathematical Society, Volume 371 (2019) no. 1, pp. 249-277 | DOI:10.1090/tran/7212 | Zbl:1416.11146 - Mock modularity of the
-rank of overpartitions, Journal of Mathematical Analysis and Applications, Volume 466 (2018) no. 2, pp. 1144-1189 | DOI:10.1016/j.jmaa.2018.06.018 | Zbl:1423.11175 - Exotic Bailey-Slater spt-functions. I: Group A., Advances in Mathematics, Volume 305 (2017), pp. 479-514 | DOI:10.1016/j.aim.2016.09.034 | Zbl:1416.11154
- Dyson's ranks and Appell-Lerch sums, Mathematische Annalen, Volume 367 (2017) no. 1-2, pp. 373-395 | DOI:10.1007/s00208-016-1390-5 | Zbl:1367.11077
- A proof of some conjectures of Mao on partition rank inequalities, The Ramanujan Journal, Volume 43 (2017) no. 3, pp. 633-648 | DOI:10.1007/s11139-016-9789-x | Zbl:1432.11140
- Exotic Bailey-Slater spt-functions. III: Bailey pairs from groups B, F, G, and J, Acta Arithmetica, Volume 173 (2016) no. 4, pp. 317-364 | DOI:10.4064/aa8193-2-2016 | Zbl:1351.11069
- The rank and crank of partitions modulo 3, International Journal of Number Theory, Volume 12 (2016) no. 4, pp. 1027-1053 | DOI:10.1142/s1793042116500640 | Zbl:1336.05012
- Asymptotic formulas for
-ranks of partitions without repeated odd parts, Journal of Number Theory, Volume 166 (2016), pp. 324-343 | DOI:10.1016/j.jnt.2016.02.003 | Zbl:1334.05011 - Proof of a limited version of Mao's partition rank inequality using a theta function identity, Research in Number Theory, Volume 2 (2016), p. 6 (Id/No 22) | DOI:10.1007/s40993-016-0055-5 | Zbl:1415.11139
- Ramanujan-type partial theta identities and rank differences for special unimodal sequences, Annals of Combinatorics, Volume 19 (2015) no. 4, pp. 705-733 | DOI:10.1007/s00026-015-0281-x | Zbl:1326.05008
- Rank and crank moments for partitions without repeated odd parts, International Journal of Number Theory, Volume 11 (2015) no. 3, pp. 683-703 | DOI:10.1142/s1793042115500372 | Zbl:1317.11102
- RAMANUJAN’S SPT-CRANK FOR MARKED OVERPARTITIONS, International Journal of Research -GRANTHAALAYAH, Volume 3 (2015) no. 8, p. 25 | DOI:10.29121/granthaalayah.v3.i8.2015.2958
- Proofs of two conjectures on truncated series, Journal of Combinatorial Theory. Series A, Volume 130 (2015), pp. 15-25 | DOI:10.1016/j.jcta.2014.10.004 | Zbl:1316.11092
- Another SPT crank for the number of smallest parts in overpartitions with even smallest part, Journal of Number Theory, Volume 148 (2015), pp. 196-203 | DOI:10.1016/j.jnt.2014.09.005 | Zbl:1386.11120
- Higher order SPT functions for overpartitions, overpartitions with smallest part even, and partitions with smallest part even and without repeated odd parts, Journal of Number Theory, Volume 149 (2015), pp. 285-312 | DOI:10.1016/j.jnt.2014.10.011 | Zbl:1323.11082
- On recursions for coefficients of mock theta functions, Research in Number Theory, Volume 1 (2015), p. 18 (Id/No 29) | DOI:10.1007/s40993-015-0030-6 | Zbl:1331.33034
- CONGRUENCES FOR PARTITION PAIRS WITH CONDITIONS, The Quarterly Journal of Mathematics, Volume 66 (2015) no. 3, p. 837 | DOI:10.1093/qmath/hav017
- Universal mock theta functions and two-variable Hecke-Rogers identities, The Ramanujan Journal, Volume 36 (2015) no. 1-2, pp. 267-296 | DOI:10.1007/s11139-014-9624-1 | Zbl:1380.11091
- The
-rank of partitions without repeated odd parts modulo 6 and 10, The Ramanujan Journal, Volume 37 (2015) no. 2, pp. 391-419 | DOI:10.1007/s11139-014-9578-3 | Zbl:1328.11104 - The spt-crank for overpartitions, Acta Arithmetica, Volume 166 (2014) no. 2, pp. 141-188 | DOI:10.4064/aa166-2-3 | Zbl:1316.11093
- The rank of a unimodal sequence and a partial theta identity of Ramanujan, International Journal of Number Theory, Volume 10 (2014) no. 4, pp. 1081-1098 | DOI:10.1142/s179304211450016x | Zbl:1295.05033
- Ranks of partitions modulo 10, Journal of Number Theory, Volume 133 (2013) no. 11, pp. 3678-3702 | DOI:10.1016/j.jnt.2013.05.014 | Zbl:1304.11124
- Pairs of partitions without repeated odd parts, Journal of Mathematical Analysis and Applications, Volume 394 (2012) no. 1, pp. 408-415 | DOI:10.1016/j.jmaa.2012.04.030 | Zbl:1294.11182
- Ranks and Cranks, Part III, Ramanujan's Lost Notebook (2012), p. 71 | DOI:10.1007/978-1-4614-3810-6_4
- Automorphic Properties of Generating Functions for Generalized Rank Moments and Durfee Symbols, International Mathematics Research Notices, Volume 2010 (2010) no. 2, p. 238 | DOI:10.1093/imrn/rnp131
- The nonholomorphic parts of certain weak Maass forms, Journal of Number Theory, Volume 130 (2010) no. 3, pp. 559-573 | DOI:10.1016/j.jnt.2009.09.019 | Zbl:1217.11049
Cité par 38 documents. Sources : Crossref, zbMATH