M2-rank differences for partitions without repeated odd parts
Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 2, pp. 313-334.

We prove formulas for the generating functions for M2-rank differences for partitions without repeated odd parts. These formulas are in terms of modular forms and generalized Lambert series.

Nous prouvons des formules pour les fonctions génératrices des différences de rang M2 pour les partitions où les parts impaires sont distinctes. Ces formules sont en termes de formes modulaires et de séries de Lambert généralisées.

DOI : 10.5802/jtnb.673

Jeremy Lovejoy 1 ; Robert Osburn 2

1 CNRS LIAFA Université Denis Diderot 2, Place Jussieu, Case 7014 F-75251 Paris Cedex 05, FRANCE
2 School of Mathematical Sciences University College Dublin Belfield Dublin 4
@article{JTNB_2009__21_2_313_0,
     author = {Jeremy Lovejoy and Robert Osburn},
     title = {$M_2$-rank differences for partitions without repeated odd parts},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {313--334},
     publisher = {Universit\'e Bordeaux 1},
     volume = {21},
     number = {2},
     year = {2009},
     doi = {10.5802/jtnb.673},
     mrnumber = {2541428},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.673/}
}
TY  - JOUR
AU  - Jeremy Lovejoy
AU  - Robert Osburn
TI  - $M_2$-rank differences for partitions without repeated odd parts
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2009
SP  - 313
EP  - 334
VL  - 21
IS  - 2
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.673/
DO  - 10.5802/jtnb.673
LA  - en
ID  - JTNB_2009__21_2_313_0
ER  - 
%0 Journal Article
%A Jeremy Lovejoy
%A Robert Osburn
%T $M_2$-rank differences for partitions without repeated odd parts
%J Journal de théorie des nombres de Bordeaux
%D 2009
%P 313-334
%V 21
%N 2
%I Université Bordeaux 1
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.673/
%R 10.5802/jtnb.673
%G en
%F JTNB_2009__21_2_313_0
Jeremy Lovejoy; Robert Osburn. $M_2$-rank differences for partitions without repeated odd parts. Journal de théorie des nombres de Bordeaux, Tome 21 (2009) no. 2, pp. 313-334. doi : 10.5802/jtnb.673. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.673/

[1] G. E. Andrews, A generalization of the Göllnitz-Gordon partition theorems. Proc. Amer. Math. Soc. 8 (1967), 945–952. | MR | Zbl

[2] G.E. Andrews, Two theorems of Gauss and allied identities proven arithmetically. Pacific J. Math. 41 (1972), 563–578. | MR | Zbl

[3] G.E. Andrews, The Mordell integrals and Ramanujan’s “lost” notebook. In: Analytic Numbere Theory, Lecture Notes in Mathematics 899. Springer-Verlag, New York, 1981, pp. 10–48. | MR | Zbl

[4] G.E. Andrews, Partitions, Durfee symbols, and the Atkin-Garvan moments of ranks. Invent. Math. 169 (2007), 37–73. | MR

[5] G.E. Andrews and B.C. Berndt, Ramanujan’s Lost Notebook, Part I. Springer, New York, 2005. | Zbl

[6] A.O.L. Atkin and H. Swinnerton-Dyer, Some properties of partitions. Proc. London Math. Soc. 66 (1954), 84–106. | MR | Zbl

[7] A.O.L. Atkin and S.M. Hussain, Some properties of partitions. II. Trans. Amer. Math. Soc. 89 (1958), 184–200. | MR | Zbl

[8] A. Berkovich and F. G. Garvan, Some observations on Dyson’s new symmetries of partitions. J. Combin. Theory, Ser. A 100 (2002), 61–93. | MR | Zbl

[9] K. Bringmann, K. Ono, and R. Rhoades, Eulerian series as modular forms. J. Amer. Math. Soc. 21 (2008), 1085–1104. | MR

[10] S.H. Chan, Generalized Lambert series identities. Proc. London Math. Soc. 91 (2005), 598–622. | MR | Zbl

[11] S. Corteel and O. Mallet, Overpartitions, lattice paths, and Rogers-Ramanujan identities. J. Combin. Theory Ser. A 114 (2007), 1407–1437. | MR | Zbl

[12] F.G. Garvan, Generalizations of Dyson’s rank and non-Rogers-Ramanujan partitions. Manuscripta Math. 84 (1994), 343–359. | MR | Zbl

[13] G. Gasper and M. Rahman, Basic Hypergeometric Series. Cambridge Univ. Press, Cambridge, 1990. | MR | Zbl

[14] B. Gordon and R.J. McIntosh, Some eighth order mock theta functions. J. London Math. Soc. 62 (2000), 321–335. | MR | Zbl

[15] D. Hickerson, A proof of the mock theta conjectures. Invent. Math. 94 (1988), 639–660. | MR | Zbl

[16] J. Lovejoy, Rank and conjugation for a second Frobenius representation of an overpartition. Ann. Comb. 12 (2008), 101–113. | MR | Zbl

[17] J. Lovejoy and R. Osburn, Rank differences for overpartitions. Quart. J. Math. (Oxford) 59 (2008), 257–273. | MR | Zbl

[18] P.A. MacMahon, The theory of modular partitions. Proc. Cambridge Phil. Soc. 21 (1923), 197–204.

[19] R.J. McIntosh, Second order mock theta functions. Canad. Math. Bull. 50 (2) (2007), 284–290. | MR | Zbl

  • Shishuo Fu; Haijun Li Sequences of odd length in strict partitions. II: The 2-measure and refinements of Euler's theorem, The Ramanujan Journal, Volume 68 (2025) no. 1, p. 20 (Id/No 10) | DOI:10.1007/s11139-025-01166-8 | Zbl:8087415
  • Frank G. Garvan; Rishabh Sarma Combinatorial interpretations of cranks of overpartitions and partitions without repeated odd parts, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, Volume 20 (2024), p. paper | DOI:10.3842/sigma.2024.097 | Zbl:7951891
  • Yan Fan; Eric H. Liu; Ernest X. W. Xia Inequalities for the M2-rank modulo 12 of partitions without repeated odd parts, The Ramanujan Journal, Volume 63 (2024) no. 1, pp. 105-130 | DOI:10.1007/s11139-023-00783-5 | Zbl:1555.11159
  • Su-Ping Cui; Nancy S. S. Gu; Dazhao Tang Generalizations of mock theta functions and Appell-Lerch sums, Bulletin of the Iranian Mathematical Society, Volume 49 (2023) no. 5, p. 17 (Id/No 71) | DOI:10.1007/s41980-023-00817-0 | Zbl:1539.33013
  • Su-Ping Cui; Nancy S. S. Gu; Chen-Yang Su Generalizations of mock theta functions and radial limits, Proceedings of the American Mathematical Society, Volume 151 (2023) no. 8, pp. 3317-3329 | DOI:10.1090/proc/16368 | Zbl:1515.11020
  • Renrong Mao On total number parts functions associated to ranks of overpartitions, Journal of Mathematical Analysis and Applications, Volume 506 (2022) no. 2, p. 16 (Id/No 125715) | DOI:10.1016/j.jmaa.2021.125715 | Zbl:1483.11234
  • Su-Ping Cui; Nancy S. S. Gu; Qing-Hu Hou; Chen-Yang Su Three-parameter mock theta functions, Journal of Mathematical Analysis and Applications, Volume 515 (2022) no. 2, p. 22 (Id/No 126459) | DOI:10.1016/j.jmaa.2022.126459 | Zbl:1491.11048
  • Ernest X. W. Xia; Xiang Zhao Identities and inequalities for the M2-rank of partitions without repeated odd parts modulo 8, The Ramanujan Journal, Volume 58 (2022) no. 4, pp. 1259-1284 | DOI:10.1007/s11139-021-00486-9 | Zbl:1501.11095
  • JiSun Huh; Byungchan Kim On the number of equivalence classes arising from partition involutions. II, Discrete Mathematics, Volume 344 (2021) no. 7, p. 13 (Id/No 112410) | DOI:10.1016/j.disc.2021.112410 | Zbl:1473.11189
  • Song Heng Chan; Renrong Mao; Robert Osburn Variations of Andrews-Beck type congruences, Journal of Mathematical Analysis and Applications, Volume 495 (2021) no. 2, p. 14 (Id/No 124771) | DOI:10.1016/j.jmaa.2020.124771 | Zbl:1464.11106
  • Chris Jennings-Shaffer; Dillon Reihill Asymptotic formulas related to the M2-rank of partitions without repeated odd parts, The Ramanujan Journal, Volume 52 (2020) no. 1, pp. 175-242 | DOI:10.1007/s11139-019-00147-y | Zbl:1445.11117
  • Kathrin Bringmann; Chris Jennings-Shaffer Unimodal sequence generating functions arising from partition ranks, Research in Number Theory, Volume 5 (2019) no. 3, p. 17 (Id/No 25) | DOI:10.1007/s40993-019-0164-z | Zbl:1416.05016
  • Chris Jennings-Shaffer The generating function of the M2-rank of partitions without repeated odd parts as a mock modular form, Transactions of the American Mathematical Society, Volume 371 (2019) no. 1, pp. 249-277 | DOI:10.1090/tran/7212 | Zbl:1416.11146
  • Chris Jennings-Shaffer; Holly Swisher Mock modularity of the Md-rank of overpartitions, Journal of Mathematical Analysis and Applications, Volume 466 (2018) no. 2, pp. 1144-1189 | DOI:10.1016/j.jmaa.2018.06.018 | Zbl:1423.11175
  • C. Jennings-Shaffer Exotic Bailey-Slater spt-functions. I: Group A., Advances in Mathematics, Volume 305 (2017), pp. 479-514 | DOI:10.1016/j.aim.2016.09.034 | Zbl:1416.11154
  • Dean Hickerson; Eric Mortenson Dyson's ranks and Appell-Lerch sums, Mathematische Annalen, Volume 367 (2017) no. 1-2, pp. 373-395 | DOI:10.1007/s00208-016-1390-5 | Zbl:1367.11077
  • Ethan Alwaise; Elena Iannuzzi; Holly Swisher A proof of some conjectures of Mao on partition rank inequalities, The Ramanujan Journal, Volume 43 (2017) no. 3, pp. 633-648 | DOI:10.1007/s11139-016-9789-x | Zbl:1432.11140
  • Chris Jennings-Shaffer Exotic Bailey-Slater spt-functions. III: Bailey pairs from groups B, F, G, and J, Acta Arithmetica, Volume 173 (2016) no. 4, pp. 317-364 | DOI:10.4064/aa8193-2-2016 | Zbl:1351.11069
  • Song Heng Chan; Renrong Mao The rank and crank of partitions modulo 3, International Journal of Number Theory, Volume 12 (2016) no. 4, pp. 1027-1053 | DOI:10.1142/s1793042116500640 | Zbl:1336.05012
  • Renrong Mao Asymptotic formulas for M2-ranks of partitions without repeated odd parts, Journal of Number Theory, Volume 166 (2016), pp. 324-343 | DOI:10.1016/j.jnt.2016.02.003 | Zbl:1334.05011
  • Rupam Barman; Archit Pal Singh Sachdeva Proof of a limited version of Mao's partition rank inequality using a theta function identity, Research in Number Theory, Volume 2 (2016), p. 6 (Id/No 22) | DOI:10.1007/s40993-016-0055-5 | Zbl:1415.11139
  • Byungchan Kim; Jeremy Lovejoy Ramanujan-type partial theta identities and rank differences for special unimodal sequences, Annals of Combinatorics, Volume 19 (2015) no. 4, pp. 705-733 | DOI:10.1007/s00026-015-0281-x | Zbl:1326.05008
  • Chris Jennings-Shaffer Rank and crank moments for partitions without repeated odd parts, International Journal of Number Theory, Volume 11 (2015) no. 3, pp. 683-703 | DOI:10.1142/s1793042115500372 | Zbl:1317.11102
  • Nil Ratan Bhattacharjee; Sabuj Das RAMANUJAN’S SPT-CRANK FOR MARKED OVERPARTITIONS, International Journal of Research -GRANTHAALAYAH, Volume 3 (2015) no. 8, p. 25 | DOI:10.29121/granthaalayah.v3.i8.2015.2958
  • Renrong Mao Proofs of two conjectures on truncated series, Journal of Combinatorial Theory. Series A, Volume 130 (2015), pp. 15-25 | DOI:10.1016/j.jcta.2014.10.004 | Zbl:1316.11092
  • C. Jennings-Shaffer Another SPT crank for the number of smallest parts in overpartitions with even smallest part, Journal of Number Theory, Volume 148 (2015), pp. 196-203 | DOI:10.1016/j.jnt.2014.09.005 | Zbl:1386.11120
  • C. Jennings-Shaffer Higher order SPT functions for overpartitions, overpartitions with smallest part even, and partitions with smallest part even and without repeated odd parts, Journal of Number Theory, Volume 149 (2015), pp. 285-312 | DOI:10.1016/j.jnt.2014.10.011 | Zbl:1323.11082
  • Song Heng Chan; Renrong Mao; Robert Osburn On recursions for coefficients of mock theta functions, Research in Number Theory, Volume 1 (2015), p. 18 (Id/No 29) | DOI:10.1007/s40993-015-0030-6 | Zbl:1331.33034
  • Chris Jennings-Shaffer CONGRUENCES FOR PARTITION PAIRS WITH CONDITIONS, The Quarterly Journal of Mathematics, Volume 66 (2015) no. 3, p. 837 | DOI:10.1093/qmath/hav017
  • F. G. Garvan Universal mock theta functions and two-variable Hecke-Rogers identities, The Ramanujan Journal, Volume 36 (2015) no. 1-2, pp. 267-296 | DOI:10.1007/s11139-014-9624-1 | Zbl:1380.11091
  • Renrong Mao The M2-rank of partitions without repeated odd parts modulo 6 and 10, The Ramanujan Journal, Volume 37 (2015) no. 2, pp. 391-419 | DOI:10.1007/s11139-014-9578-3 | Zbl:1328.11104
  • Frank G. Garvan; Chris Jennings-Shaffer The spt-crank for overpartitions, Acta Arithmetica, Volume 166 (2014) no. 2, pp. 141-188 | DOI:10.4064/aa166-2-3 | Zbl:1316.11093
  • Byungchan Kim; Jeremy Lovejoy The rank of a unimodal sequence and a partial theta identity of Ramanujan, International Journal of Number Theory, Volume 10 (2014) no. 4, pp. 1081-1098 | DOI:10.1142/s179304211450016x | Zbl:1295.05033
  • Renrong Mao Ranks of partitions modulo 10, Journal of Number Theory, Volume 133 (2013) no. 11, pp. 3678-3702 | DOI:10.1016/j.jnt.2013.05.014 | Zbl:1304.11124
  • Song Heng Chan; Renrong Mao Pairs of partitions without repeated odd parts, Journal of Mathematical Analysis and Applications, Volume 394 (2012) no. 1, pp. 408-415 | DOI:10.1016/j.jmaa.2012.04.030 | Zbl:1294.11182
  • George E. Andrews; Bruce C. Berndt Ranks and Cranks, Part III, Ramanujan's Lost Notebook (2012), p. 71 | DOI:10.1007/978-1-4614-3810-6_4
  • Kathrin Bringmann; Jeremy Lovejoy; Robert Osburn Automorphic Properties of Generating Functions for Generalized Rank Moments and Durfee Symbols, International Mathematics Research Notices, Volume 2010 (2010) no. 2, p. 238 | DOI:10.1093/imrn/rnp131
  • Michael Dewar The nonholomorphic parts of certain weak Maass forms, Journal of Number Theory, Volume 130 (2010) no. 3, pp. 559-573 | DOI:10.1016/j.jnt.2009.09.019 | Zbl:1217.11049

Cité par 38 documents. Sources : Crossref, zbMATH