Pour et impair suffisamment grand, nous montrons que, pour presque tout , il existe une représentation avec des nombres premiers modulo pour presque tout triplet admissible de résidus modulo .
For and any sufficiently large odd we show that for almost all there exists a representation with primes mod for almost all admissible triplets of reduced residues mod .
@article{JTNB_2009__21_1_203_0, author = {Karin Halupczok}, title = {On the ternary Goldbach problem with primes in arithmetic progressions having a common modulus}, journal = {Journal de Th\'eorie des Nombres de Bordeaux}, pages = {203--213}, publisher = {Universit\'e Bordeaux 1}, volume = {21}, number = {1}, year = {2009}, doi = {10.5802/jtnb.666}, zbl = {pre05620677}, mrnumber = {2537712}, language = {en}, url = {jtnb.centre-mersenne.org/item/JTNB_2009__21_1_203_0/} }
Karin Halupczok. On the ternary Goldbach problem with primes in arithmetic progressions having a common modulus. Journal de Théorie des Nombres de Bordeaux, Tome 21 (2009) no. 1, pp. 203-213. doi : 10.5802/jtnb.666. https://jtnb.centre-mersenne.org/item/JTNB_2009__21_1_203_0/
[1] A. Balog, The Prime -Tuplets Conjecture on Average. Analytic number theory, Proc. Conf. in Honor of Paul T. Bateman, Urbana/IL (USA), 1989, Prog. Math. 85 (1990), 47–75. | MR 1084173 | Zbl 0719.11066
[2] C. Bauer, Y. Wang, On the Goldbach conjecture in arithmetic progressions. Rocky Mountain J. Math. 36 (1) (2006), 35–66. | MR 2228183 | Zbl 1148.11053
[3] Z. Cui, The ternary Goldbach problem in arithmetic progression II. Acta Math. Sinica (Chin. Ser.) 49 (1) (2006), 129–138. | MR 2248920 | Zbl pre05186362
[4] J. Liu, T. Zhang, The ternary Goldbach problem in arithmetic progressions. Acta Arith. 82 (3) (1997), 197–227. | MR 1482887 | Zbl 0889.11035
[5] M. B. Nathanson, Additive Number Theory: The Classical Bases. Graduate texts in Mathematics 164, Springer-Verlag, 1996. | MR 1395371 | Zbl 0859.11002