On the spectrum of the Thue-Morse quasicrystal and the rarefaction phenomenon
Journal de Théorie des Nombres de Bordeaux, Tome 20 (2008) no. 3, pp. 673-705.

On explore le spectre d’un peigne de Dirac pondéré supporté par le quasicristal de Thue-Morse au moyen de la Conjecture de Bombieri-Taylor, pour les pics de Bragg, et d’une nouvelle conjecture que l’on appelle Conjecture de Aubry-Godrèche-Luck, pour la composante singulière continue. La décomposition de la transformée de Fourier du peigne de Dirac pondéré est obtenue dans le cadre de la théorie des distributions tempérées. Nous montrons que l’asymptotique de l’arithmétique des sommes p-raréfiées de Thue-Morse (Dumont ; Goldstein, Kelly and Speer ; Grabner ; Drmota and Skalba,...), précisément les fonctions fractales des sommes de chiffres, jouent un rôle fondamental dans la description de la composante singulière continue du spectre, combinées à des résultats classiques sur les produits de Riesz de Peyrière et de M. Queffélec. Les lois d’échelle dominantes des suites de mesures approximantes sont contrôlées sur une partie de la composante singulière continue par certaines inégalités dans lesquelles le nombre de classes de diviseurs et le régulateur de corps quadratiques réels interviennent.

The spectrum of a weighted Dirac comb on the Thue-Morse quasicrystal is investigated by means of the Bombieri-Taylor conjecture, for Bragg peaks, and of a new conjecture that we call Aubry-Godrèche-Luck conjecture, for the singular continuous component. The decomposition of the Fourier transform of the weighted Dirac comb is obtained in terms of tempered distributions. We show that the asymptotic arithmetics of the p-rarefied sums of the Thue-Morse sequence (Dumont; Goldstein, Kelly and Speer; Grabner; Drmota and Skalba,...), namely the fractality of sum-of-digits functions, play a fundamental role in the description of the singular continous part of the spectrum, combined with some classical results on Riesz products of Peyrière and M. Queffélec. The dominant scaling of the sequences of approximant measures on a part of the singular component is controlled by certain inequalities in which are involved the class number and the regulator of real quadratic fields.

Reçu le : 2008-01-07
Publié le : 2009-06-04
DOI : https://doi.org/10.5802/jtnb.645
Mots clés : Thue-Morse quasicrystal, spectrum, singular continuous component, rarefied sums, sum-of-digits fractal functions, approximation to distribution
@article{JTNB_2008__20_3_673_0,
     author = {Jean-Pierre Gazeau and Jean-Louis Verger-Gaugry},
     title = {On the spectrum of the Thue-Morse quasicrystal and the rarefaction phenomenon},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {673--705},
     publisher = {Universit\'e Bordeaux 1},
     volume = {20},
     number = {3},
     year = {2008},
     doi = {10.5802/jtnb.645},
     mrnumber = {2523312},
     zbl = {1205.11031},
     language = {en},
     url = {jtnb.centre-mersenne.org/item/JTNB_2008__20_3_673_0/}
}
Jean-Pierre Gazeau; Jean-Louis Verger-Gaugry. On the spectrum of the Thue-Morse quasicrystal and the rarefaction phenomenon. Journal de Théorie des Nombres de Bordeaux, Tome 20 (2008) no. 3, pp. 673-705. doi : 10.5802/jtnb.645. https://jtnb.centre-mersenne.org/item/JTNB_2008__20_3_673_0/

[AGL] S. Aubry, C. Godrèche and J.-M. Luck, Scaling Properties of a Structure Intermediate between Quasiperiodic and Random, J. Stat. Phys. 51 (1988), 1033–1075. | MR 971045 | Zbl 1086.37522

[AMF] J.-P. Allouche and M. Mendès-France, Automata and automatic sequences, in Beyond Quasicrystals, Ed. F. Axel and D. Gratias, Course 11, Les Editions de Physique, Springer (1995), 293–367. | MR 1420422 | Zbl 0881.11026

[AT] F. Axel and H. Terauchi, High-resolution X-ray-diffraction spectra of Thue-Morse GaAs-AlAs heterostructures: Towards a novel description of disorder, Phys. Rev. Lett. 66 (1991), 2223–2226.

[B] Zai-Qiao Bai, Multifractal analysis of the spectral measure of the Thue-Morse sequence: a periodic orbit approach, J. Phys. A: Math. Gen. 39 (2006) 10959–10973. | MR 2277352 | Zbl 1097.81032

[B-VK] J.-P. Bertrandias, J. Couot, J. Dhombres, M. Mendès-France, P. Phu Hien and K. Vo Khac, Espaces de Marcinkiewicz, corrélations, mesures, systèmes dynamiques, Masson, Paris (1987). | MR 878355 | Zbl 0617.46034

[Bs1] J.-P. Bertrandias, Espaces de fonctions continues et bornées en moyenne asymptotique d’ordre p, Mémoire Soc. Math. france (1966), no. 5, 3–106. | Numdam | MR 196411 | Zbl 0148.11701

[BS] Z.I. Borevitch and I.R. Chafarevitch, Théorie des Nombres, Gauthiers-Villars, Paris (1967). | MR 205908 | Zbl 0145.04901

[BT1] E. Bombieri and J.E. Taylor, “Which distributions of matter diffract ? An initial investigation”, J. Phys. Colloque 47 (1986), C3, 19–28. | MR 866320 | Zbl 0693.52002

[BT2] E. Bombieri and J.E. Taylor, Quasicrystals, tilings, and algebraic number theory: some preliminary connections, Contemp. Math. 64 (1987), 241–264. | MR 881466 | Zbl 0617.43002

[CL1] H. Cohen and H.W. Lenstra, Jr., Heuristics on Class groups, Lect. Notes Math. 1052 (1984), 26–36. | MR 750661 | Zbl 0532.12008

[CL2] H. Cohen and H.W. Lenstra, Jr., Heuristics on Class groups of number fields, Number Theory, Proc. Journ. Arithm., Noodwijkerhout/Neth. 1983, Lect. Notes Math. 1068 (1984), 33–62. | MR 756082 | Zbl 0558.12002

[CM] H. Cohen and J. Martinet, Class Groups of Number Fields: Numerical Heuristics, Math. Comp. 48 (1987), 123–137. | MR 866103 | Zbl 0627.12006

[CSM] Z. Cheng, R. Savit and R. Merlin, Structure and electronic properties of Thue-Morse lattices, Phys. Rev B 37 (1988), 4375–4382.

[Ct] J. Coquet, A summation formula related to the binary digits, Inv. Math. 73 (1983), 107–115. | MR 707350 | Zbl 0528.10006

[Cy] J.-M. Cowley, Diffraction physics, North-Holland, Amsterdam (1986), 2nd edition.

[D] J.M. Dumont, Discrépance des progressions arithmétiques dans la suite de Morse, C. R. Acad. Sci. Paris Série I 297 (1983), 145–148. | MR 725391 | Zbl 0533.10005

[DS1] M. Drmota and M. Skalba, Sign-changes of the Thue-Morse fractal fonction and Dirichlet L-series, Manuscripta Math. 86 (1995), 519–541. | MR 1324686 | Zbl 0828.11013

[DS2] M. Drmota and M. Skalba, Rarefied sums of the Thue-Morse sequence, Trans. Amer. Math. Soc. 352 (2000), 609–642. | MR 1491859 | Zbl 0995.11017

[G] A. Guinier, Theory and Technics for X-Ray Crystallography, Dunod, Paris (1964).

[Gd] A.O. Gelfond, Sur les nombres qui ont des propriétés additives et multiplicatives données, Acta Arith. 13 (1968), 259–265. | MR 220693 | Zbl 0155.09003

[GHT] P.J. Grabner, T. Herendi and R.F. Tichy, Fractal digital sums and Codes, AAECC 8 (1997), 33-39. | MR 1465087 | Zbl 0874.11012

[GKS] S. Goldstein, K.A. Kelly and E.R. Speer, The fractal structure of rarefied sums of the Thue-Morse sequence, J. Number Th. 42 (1992), 1–19. | MR 1176416 | Zbl 0788.11010

[GL1] C. Godrèche and J.-M. Luck, Multifractal analysis in reciprocal space and the nature of the Fourier transform of self-similar structures, J. Phys. A: Math. Gen. 23 (1990), 3769–3797. | MR 1069478 | Zbl 0713.11021

[GL2] C. Godrèche and J.-M. Luck, Indexing the diffraction spectrum of a non-Pisot self-structure, Phys. Rev. B 45 (1992), 176–185.

[Gr1] P.J. Grabner, A note on the parity of the sum-of-digits function, Actes 30ième Séminaire Lotharingien de Combinatoire (Gerolfingen, 1993), 35–42. | MR 1312627 | Zbl 1060.11506

[Gr2] P.J. Grabner, Completely q-Multiplicative Functions: the Mellin Transform Approach, Acta Arith. 65 (1993), 85–96. | MR 1239244 | Zbl 0783.11035

[GVG] J. P. Gazeau and J.-L. Verger-Gaugry, Diffraction spectra of weighted Delone sets on beta-lattices with beta a quadratic unitary Pisot number, Ann. Inst. Fourier 56 (2006), 2437–2461. | Numdam | MR 2290786 | Zbl 1119.52015

[H] A. Hof, On diffraction by aperiodic structures, Commun. Math. Phys. 169 (1995), 25–43. | MR 1328260 | Zbl 0821.60099

[Ha] L.-K. Hua, Introduction to Number Theory, Springer-Verlag, Berlin-New York (1982). | MR 665428 | Zbl 0483.10001

[K] M. Kac, On the distribution of values of sums of the type f(2 k t), Ann. Math. 47 (1946), 33–49. | MR 15548 | Zbl 0063.03091

[KIR] M. Kolár, B. Iochum and L. Raymond, Structure factor of 1D systems (superlattices) based on two-letter substitution rules: I. δ (Bragg) peaks, J. Phys. A: Math. Gen. 26 (1993), 7343–7366. | MR 1257767

[La1] J.C. Lagarias, Meyer’s concept of quasicrystal and quasiregular sets, Comm. Math. Phys. 179 (1995), 365–376. | MR 1400744 | Zbl 0858.52010

[La2] J.C. Lagarias, Mathematical quasicrystals and the problem of diffraction, in Directions in Mathematical Quasicrystals, ed. M. Baake & R.V. Moody, CRM Monograph Series, Amer. Math. Soc. Providence, RI, (2000), 61–93. | MR 1798989 | Zbl pre01584913

[Le] H.W. Lenstra Jr., On Artin’s conjecture and Euclid’s algorithm in global fields, Invent. Math. 42 (1977), 201–224. | MR 480413 | Zbl 0362.12012

[Lu] J.-M. Luck, Cantor spectra and scaling of gap widths in deterministic aperiodic systems, Phys. Rev. B 39 (1989), 5834–5849.

[Lz] D. Lenz, Continuity of Eigenfonctions of Uniquely Ergodic Dynamical Systems and Intensity of Bragg peaks, preprint (2006). | MR 2480747

[M] R.V. Moody, Meyer sets and their duals, in The Mathematics of Long-Range Aperiodic Order, Ed. R.V. Moody, Kluwer (1997), 403–442. | MR 1460032 | Zbl 0880.43008

[N] D.J. Newman, On the number of binary digits in a multiple of three, Proc. Am. Math. Soc. 21 (1969), 719–721. | MR 244149 | Zbl 0194.35004

[Oa] C.R. de Oliveira, A proof of the dynamical version of the Bombieri-Taylor Conjecture, J. Math. Phys. 39 (1998), 4335–4342. | MR 1643245 | Zbl 0940.81017

[P] J. Peyrière, Etude de quelques propriétés des produits de Riesz, Ann. Inst. Fourier 25 (1975), 127–169. | Numdam | MR 404973 | Zbl 0302.43003

[PCA] J. Peyrière, E. Cockayne and F. Axel, Line-Shape Analysis of High Resolution X-Ray Diffraction Spectra of Finite Size Thue-Morse GaAs-AlAs Multilayer Heterostructures, J. Phys. I France 5 (1995), 111–127.

[Q1] M. Queffélec, Dynamical systems - Spectral Analysis, Lect. Notes Math. 1294 (1987). | Zbl 0642.28013

[Q2] M. Queffélec, Spectral study of automatic and substitutive sequences, in Beyond Quasicrystals, Ed. F. Axel and D. Gratias, Course 12, Les Editions de Physique - Springer (1995), 369–414. | MR 1420423 | Zbl 0881.11027

[R] D. Raikov, On some arithmetical properties of summable functions, Rec. Math. de Moscou 1 (43;3) (1936) 377–383. | Zbl 0014.39701

[Su] N. Strungaru, Almost Periodic Measures and Long-Range Order in Meyer Sets, Discr. Comput. Geom. 33 (2005), 483–505. | MR 2121992 | Zbl 1062.43008

[Sz] L. Schwartz, Théorie des distributions, Hermann, Paris (1973). | MR 209834 | Zbl 0962.46025

[VG] J.-L. Verger-Gaugry, On self-similar finitely generated uniformly discrete (SFU-) sets and sphere packings, in IRMA Lect. in Math. and Theor. Phys. 10, Ed. L. Nyssen, E.M.S. (2006), 39–78. | MR 2277756 | Zbl pre05263002

[VK] K. Vo Khac, Fonctions et distributions stationnaires. Application à l’étude des solutions stationnaires d’équations aux dérivées partielles, in [B-VK], pp 11–57.

[WWVG] J. Wolny, A. Wnek and J.-L. Verger-Gaugry, Fractal behaviour of diffraction patterns of Thue-Morse sequence, J. Comput. Phys. 163 (2000), 313. | MR 1783556 | Zbl 1073.82617