Nous décrivons un algorithme simple pour déterminer les facteurs d’Aurifeuille des entiers , où est le -ème polynôme cyclotomique, et un entier. Sous une hypothèse de Riemann convenable, l’algorithme termine en temps polynomial déterministe , utilisant un espace , où l’on a noté .
We describe a simple procedure to find Aurifeuillian factors of values of cyclotomic polynomials for integers and . Assuming a suitable Riemann Hypothesis, the algorithm runs in deterministic time , using space, where .
@article{JTNB_2008__20_3_543_0, author = {Bill Allombert and Karim Belabas}, title = {Practical {Aurifeuillian} factorization}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {543--553}, publisher = {Universit\'e Bordeaux 1}, volume = {20}, number = {3}, year = {2008}, doi = {10.5802/jtnb.641}, mrnumber = {2523308}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.641/} }
TY - JOUR AU - Bill Allombert AU - Karim Belabas TI - Practical Aurifeuillian factorization JO - Journal de théorie des nombres de Bordeaux PY - 2008 SP - 543 EP - 553 VL - 20 IS - 3 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.641/ DO - 10.5802/jtnb.641 LA - en ID - JTNB_2008__20_3_543_0 ER -
%0 Journal Article %A Bill Allombert %A Karim Belabas %T Practical Aurifeuillian factorization %J Journal de théorie des nombres de Bordeaux %D 2008 %P 543-553 %V 20 %N 3 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.641/ %R 10.5802/jtnb.641 %G en %F JTNB_2008__20_3_543_0
Bill Allombert; Karim Belabas. Practical Aurifeuillian factorization. Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 3, pp. 543-553. doi : 10.5802/jtnb.641. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.641/
[1] E. Bach & J. Sorenson, Explicit bounds for primes in residue classes. Math. Comp. 65 (1996), no. 216, pp. 1717–1735. | MR | Zbl
[2] R. P. Brent, Computing Aurifeuillian factors, in Computational algebra and number theory (Sydney, 1992). Math. Appl., vol. 325, Kluwer Acad. Publ., 1995, pp. 201–212. | MR | Zbl
[3] D. A. Burgess, On character sums and primitive roots. Proc. London Math. Soc. (3) 12 (1962), pp. 179–192. | MR | Zbl
[4] H. Cohen, A course in computational algebraic number theory. Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. | MR | Zbl
[5] A. Granville & P. Pleasants, Aurifeuillian factorization. Math. Comp. 75 (2006), no. 253, pp. 497–508. | MR | Zbl
[6] D. R. Heath-Brown, Zero-free regions for Dirichlet -functions, and the least prime in an arithmetic progression. Proc. London Math. Soc. (3) 64 (1992), no. 2, pp. 265–338. | MR | Zbl
[7] H. Iwaniec, On the problem of Jacobsthal. Demonstratio Math. 11 (1978), no. 1, pp. 225–231. | MR | Zbl
[8] PARI/GP, version 2.4.3, Bordeaux, 2008, http://pari.math.u-bordeaux.fr/.
[9] A. Schinzel, On primitive prime factors of . Proc. Cambridge Philos. Soc. 58 (1962), pp. 555–562. | MR | Zbl
[10] P. Stevenhagen, On Aurifeuillian factorizations. Nederl. Akad. Wetensch. Indag. Math. 49 (1987), no. 4, pp. 451–468. | MR | Zbl
Cité par Sources :