Nous considérons quelques variations sur la méthode classique de Runge pour déterminer effectivement les points entiers sur certaines courbes. Nous prouvons d’abord une version du théorème de Runge valide pour des variétés de dimension supérieure, généralisant une version uniforme du théorème de Runge due à Bombieri. Nous étudions alors comment la méthode de Runge peut être étendue en utilisant certains revêtements. Nous prouvons un résultat pour les courbes arbitraires et un résultat plus explicite pour les courbes superelliptic. Comme application de notre méthode, nous résolvons complètement certaines équations impliquant des carrés dans les produits des termes dans une progression arithmétique.
We consider some variations on the classical method of Runge for effectively determining integral points on certain curves. We first prove a version of Runge’s theorem valid for higher-dimensional varieties, generalizing a uniform version of Runge’s theorem due to Bombieri. We then take up the study of how Runge’s method may be expanded by taking advantage of certain coverings. We prove both a result for arbitrary curves and a more explicit result for superelliptic curves. As an application of our method, we completely solve certain equations involving squares in products of terms in an arithmetic progression.
@article{JTNB_2008__20_2_385_0, author = {Aaron Levin}, title = {Variations on a theme of {Runge:} effective determination of integral points on certain varieties}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {385--417}, publisher = {Universit\'e Bordeaux 1}, volume = {20}, number = {2}, year = {2008}, doi = {10.5802/jtnb.634}, mrnumber = {2477511}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.634/} }
TY - JOUR AU - Aaron Levin TI - Variations on a theme of Runge: effective determination of integral points on certain varieties JO - Journal de théorie des nombres de Bordeaux PY - 2008 SP - 385 EP - 417 VL - 20 IS - 2 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.634/ DO - 10.5802/jtnb.634 LA - en ID - JTNB_2008__20_2_385_0 ER -
%0 Journal Article %A Aaron Levin %T Variations on a theme of Runge: effective determination of integral points on certain varieties %J Journal de théorie des nombres de Bordeaux %D 2008 %P 385-417 %V 20 %N 2 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.634/ %R 10.5802/jtnb.634 %G en %F JTNB_2008__20_2_385_0
Aaron Levin. Variations on a theme of Runge: effective determination of integral points on certain varieties. Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 2, pp. 385-417. doi : 10.5802/jtnb.634. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.634/
[1] A. Baker, Transcendental number theory, second ed. Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1990. | MR | Zbl
[2] M. A. Bennett, N. Bruin, K. Győry, L. Hajdu, Powers from products of consecutive terms in arithmetic progression. Proc. London Math. Soc. (3) 92 (2006), no. 2, 273–306. | MR
[3] E. Bombieri, On Weil’s “théorème de décomposition”. Amer. J. Math. 105 (1983), no. 2, 295–308. | Zbl
[4] E. Bombieri, W. Gubler, Heights in Diophantine geometry. New Mathematical Monographs, vol. 4, Cambridge University Press, Cambridge, 2006. | MR | Zbl
[5] R. F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), no. 3, 765–770. | MR | Zbl
[6] P. Erdős, J. L. Selfridge, The product of consecutive integers is never a power. Illinois J. Math. 19 (1975), 292–301. | MR | Zbl
[7] D. L. Hilliker, E. G. Straus, Determination of bounds for the solutions to those binary Diophantine equations that satisfy the hypotheses of Runge’s theorem. Trans. Amer. Math. Soc. 280 (1983), no. 2, 637–657. | Zbl
[8] M. Hindry, J. H. Silverman, Diophantine geometry. Graduate Texts in Mathematics, vol. 201, Springer-Verlag, New York, 2000. | MR | Zbl
[9] N. Hirata-Kohno, S. Laishram, T. N. Shorey, R. Tijdeman, An extension of a theorem of Euler. Acta Arith. 129 (2007), no. 1, 71–102. | MR | Zbl
[10] S. Laishram, T. N. Shorey, Squares in products in arithmetic progression with at most two terms omitted and common difference a prime power. Acta Arith. (to appear).
[11] S. Laishram, T. N. Shorey, S. Tengely, Squares in products in arithmetic progression with at most one term omitted and common difference a prime power. (to appear). | MR
[12] A. Levin, Ideal class groups and torsion in Picard groups of varieties. (submitted).
[13] A. Levin, Ideal class groups, Hilbert’s irreducibility theorem, and integral points of bounded degree on curves. J. Théor. Nombres Bordeaux 19 (2007), no. 2, 485–499. | Numdam
[14] D. W. Masser, G. Wüstholz, Fields of large transcendence degree generated by values of elliptic functions. Invent. Math. 72 (1983), no. 3, 407–464. | MR | Zbl
[15] A. Mukhopadhyay, T. N. Shorey, Almost squares in arithmetic progression. II Acta Arith. 110 (2003), no. 1, 1–14. | MR | Zbl
[16] A. Mukhopadhyay, T. N. Shorey, Almost squares in arithmetic progression. III. Indag. Math. (N.S.) 15 (2004), no. 4, 523–533. | MR
[17] A. Mukhopadhyay, T. N. Shorey, Square free part of products of consecutive integers. Publ. Math. Debrecen 64 (2004), no. 1-2, 79–99. | MR | Zbl
[18] R. Obláth, Über das Produkt fünf aufeinander folgender Zahlen in einer arithmetischen Reihe. Publ. Math. Debrecen 1 (1950), 222–226. | MR | Zbl
[19] C. Runge, Über ganzzahlige Lösungen von Gleichungen zwischen zwei Veränderlichen. J. Reine Angew. Math. 100 (1887), 425–435.
[20] N. Saradha, T. N. Shorey, Almost squares and factorisations in consecutive integers. Compositio Math. 138 (2003), no. 1, 113–124. | MR | Zbl
[21] N. Saradha, T. N. Shorey, Almost squares in arithmetic progression. Compositio Math. 138 (2003), no. 1, 73–111. | MR | Zbl
[22] A. Schinzel, W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers. Acta Arith. 4 (1958), 185–208; erratum 5 (1958), 259. | MR | Zbl
[23] T. N. Shorey, Exponential Diophantine equations involving products of consecutive integers and related equations. Number theory, Trends Math., Birkhäuser, Basel, 2000, pp. 463–495. | MR | Zbl
[24] T. N. Shorey, Powers in arithmetic progressions. III. The Riemann zeta function and related themes: papers in honour of Professor K. Ramachandra, Ramanujan Math. Soc. Lect. Notes Ser., vol. 2, Ramanujan Math. Soc., Mysore, 2006, pp. 131–140. | MR | Zbl
[25] T. N. Shorey, R. Tijdeman, Some methods of Erdős applied to finite arithmetic progressions. The mathematics of Paul Erdős, I, Algorithms Combin., vol. 13, Springer, Berlin, 1997, pp. 251–267. | MR | Zbl
[26] V. G. Sprindžuk, Reducibility of polynomials and rational points on algebraic curves. Dokl. Akad. Nauk SSSR 250 (1980), no. 6, 1327–1330. | MR | Zbl
[27] W. Stein, Sage: Open Source Mathematical Software (Version 2.10.2). The Sage Group, 2008, http://www.sagemath.org.
[28] S. Tengely, Note on a paper “An extension of a theorem of Euler” by Hirata-Kohno et al. arXiv:0707.0596v1 [math.NT].
[29] The PARI Group, Bordeaux, PARI/GP, version 2.3.3, 2005, available from http://pari.math.u-bordeaux.fr/.
[30] P. G. Walsh, A quantitative version of Runge’s theorem on Diophantine equations. Acta Arith. 62 (1992), no. 2, 157–172. | Zbl
Cité par Sources :