We use the conjecture of Conrey, Farmer and Zirnbauer for averages of ratios of the Riemann zeta function [11] to calculate all the lower order terms of the triple correlation function of the Riemann zeros. A previous approach was suggested by Bogomolny and Keating [6] taking inspiration from semi-classical methods. At that point they did not write out the answer explicitly, so we do that here, illustrating that by our method all the lower order terms down to the constant can be calculated rigourously if one assumes the ratios conjecture of Conrey, Farmer and Zirnbauer. Bogomolny and Keating [4] returned to their previous results simultaneously with this current work, and have written out the full expression. The result presented in this paper agrees precisely with their formula, as well as with our numerical computations, which we include here.
We also include an alternate proof of the triple correlation of eigenvalues from random
La conjecture de Conrey, Farmer et Zirnbauer [11] concernant les moyennes de quotients de la fonction
Nous donnons également une autre preuve de la corrélation triple des valeurs propres des matrices aléatoires
@article{JTNB_2008__20_1_61_0, author = {J. Brian Conrey and Nina C. Snaith}, title = {Triple correlation of the {Riemann} zeros}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {61--106}, publisher = {Universit\'e Bordeaux 1}, volume = {20}, number = {1}, year = {2008}, doi = {10.5802/jtnb.616}, mrnumber = {2434158}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.616/} }
TY - JOUR AU - J. Brian Conrey AU - Nina C. Snaith TI - Triple correlation of the Riemann zeros JO - Journal de théorie des nombres de Bordeaux PY - 2008 SP - 61 EP - 106 VL - 20 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.616/ DO - 10.5802/jtnb.616 LA - en ID - JTNB_2008__20_1_61_0 ER -
%0 Journal Article %A J. Brian Conrey %A Nina C. Snaith %T Triple correlation of the Riemann zeros %J Journal de théorie des nombres de Bordeaux %D 2008 %P 61-106 %V 20 %N 1 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.616/ %R 10.5802/jtnb.616 %G en %F JTNB_2008__20_1_61_0
J. Brian Conrey; Nina C. Snaith. Triple correlation of the Riemann zeros. Journal de théorie des nombres de Bordeaux, Tome 20 (2008) no. 1, pp. 61-106. doi : 10.5802/jtnb.616. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.616/
[1] M.V. Berry, Semiclassical formula for the number variance of the Riemann zeros. Nonlinearity 1 (1988), 399–407. | MR | Zbl
[2] M.V. Berry, J.P. Keating, The Riemann zeros and eigenvalue asymptotics. SIAM Rev. 41(2) (1999), 236–266. | MR | Zbl
[3] E.B. Bogomolny, Spectral statistics and periodic orbits. In New Directions in Quantum Chaos; editors, G. Casati, I. Guarneri, and U. Smilansky, pages 333–369. IOS Press, Amsterdam, 2000. | MR | Zbl
[4] E.B. Bogomolny, J.P. Keating, private communication.
[5] E.B. Bogomolny, J.P. Keating, Random matrix theory and the Riemann zeros I: three- and four-point correlations. Nonlinearity 8 (1995), 1115–1131. | MR | Zbl
[6] E.B. Bogomolny, J.P. Keating, Gutzwiller’s trace formula and spectral statistics: beyond the diagonal approximation. Phys. Rev. Lett. 77(8) (1996), 1472–1475.
[7] E.B. Bogomolny, J.P. Keating, Random matrix theory and the Riemann zeros II:
[8] J.B. Conrey,
[9] J.B. Conrey, Notes on eigenvalue distributions for the classical compact groups. In Recent perspectives on random matrix theory and number theory, LMS Lecture Note Series 322, pages 111–45. Cambridge University Press, Cambridge, 2005. | MR
[10] J.B. Conrey, D.W. Farmer, J.P. Keating, M.O. Rubinstein, N.C. Snaith, Integral moments of
[11] J.B. Conrey, D.W. Farmer, M.R. Zirnbauer, Autocorrelation of ratios of characteristic polynomials and of
[12] J.B. Conrey, D.W. Farmer, M.R. Zirnbauer, Howe pairs, supersymmetry, and ratios of random characteristic polynomials for the unitary groups
[13] J.B. Conrey, P.J. Forrester, N.C. Snaith, Averages of ratios of characteristic polynomials for the compact classical groups. Int. Math. Res. Notices 7 (2005), 397–431. | MR
[14] J.B. Conrey, N.C. Snaith, Applications of the
[15] J.B. Conrey, N.C.Snaith, Correlations of eigenvalues and Riemann zeros. Preprint. arXiv:0803.2795.
[16] G.H. Hardy, J.E. Littlewood, Contributions to the theory of the Riemann zeta-function and the theory of the distribution of primes. Acta Mathematica 41 (1918), 119–196. | MR
[17] D.A. Hejhal, On the triple correlation of zeros of the zeta function. Inter. Math. Res. Notices 7 (1994), 293–302. | MR | Zbl
[18] J.P. Keating, The Riemann zeta function and quantum chaology. In Quantum Chaos; editors, G. Casati, I Guarneri, and U. Smilansky, pages 145–85. North-Holland, Amsterdam, 1993. | MR
[19] J.P. Keating, Periodic orbits, spectral statistics, and the Riemann zeros. In Supersymmetry and trace formulae: chaos and disorder; editors, I.V. Lerner, J.P. Keating, and D.E. Khmelnitskii, pages 1–15. Plenum, New York, 1999.
[20] J.P. Keating, N.C. Snaith, Random matrix theory and
[21] J.P. Keating, N.C. Snaith, Random matrices and
[22] M.L. Mehta, Random Matrices. Academic Press, London, second edition, 1991. | MR | Zbl
[23] H.L. Montgomery, The pair correlation of the zeta function. Proc. Symp. Pure Math 24 (1973), 181–93. | MR | Zbl
[24] Z. Rudnick, P. Sarnak, Zeros of principal
Cité par Sources :