Galois groups of tamely ramified p-extensions
Journal de Théorie des Nombres de Bordeaux, Volume 19 (2007) no. 1, pp. 59-70.

Very little is known regarding the Galois group of the maximal p-extension unramified outside a finite set of primes S of a number field in the case that the primes above p are not in S. We describe methods to compute this group when it is finite and conjectural properties of it when it is infinite.

On connait très peu à propos du groupe de Galois de la p-extension maximale non-ramifiée en dehors d’un ensemble fini S de nombres premiers d’un corps de nombres lorsque les nombres premiers au-dessus de p ne sont pas dans S. Nous décrivons des méthodes pour calculer ce groupe quand il est fini et ses propriétées conjecturales quand il est infini.

Received: 2006-01-10
Published online: 2008-12-03
DOI: https://doi.org/10.5802/jtnb.573
@article{JTNB_2007__19_1_59_0,
     author = {Nigel Boston},
     title = {Galois groups of tamely ramified $ p$-extensions},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     publisher = {Universit\'e Bordeaux 1},
     volume = {19},
     number = {1},
     year = {2007},
     pages = {59-70},
     doi = {10.5802/jtnb.573},
     zbl = {1123.11038},
     mrnumber = {2332053},
     language = {en},
     url={jtnb.centre-mersenne.org/item/JTNB_2007__19_1_59_0/}
}
Boston, Nigel. Galois groups of tamely ramified $ p$-extensions. Journal de Théorie des Nombres de Bordeaux, Volume 19 (2007) no. 1, pp. 59-70. doi : 10.5802/jtnb.573. https://jtnb.centre-mersenne.org/item/JTNB_2007__19_1_59_0/

[1] M.Abért, B.Virág, Dimension and randomness in groups acting on rooted trees. J. Amer. Math. Soc. 18 (2005), 157–192. | MR 2114819 | Zbl 02125234

[2] W.Aitken, F.Hajir, C.Maire, Finitely ramified iterated extensions. Int. Math. Res. Not. 14 (2005), 855–880. | MR 2146860 | Zbl 02188805

[3] Y.Barnea, M.Larsen, A non-abelian free pro-p group is not linear over a local field. J. Algebra 214 (1999), 338–341. | MR 1684856 | Zbl 0923.20018

[4] Y.Barnea, A.Shalev, Hausdorff dimension, pro-p groups, and Kac-Moody algebras. Trans. Amer. Math. Soc. 349 (1997), 5073–5091. | MR 1422889 | Zbl 0892.20020

[5] L.Bartholdi, M.R.Bush, Maximal unramified 3-extensions of imaginary quadratic fields and SL 2 (Z 3 ). To appear in J. Number Theory.

[6] L.Bartholdi, B.Virág, Amenability via random walks. To appear in Duke Math. J. | MR 2176547 | Zbl 1104.43002

[7] W.Bosma, J.Cannon, Handbook of MAGMA Functions. Sydney: School of Mathematics and Statistics, University of Sydney, 1993.

[8] N.Boston, Some Cases of the Fontaine-Mazur Conjecture II. J. Number Theory 75 (1999), 161–169. | MR 1681626 | Zbl 0928.11050

[9] N.Boston, Reducing the Fontaine-Mazur conjecture to group theory. Progress in Galois theory (2005), 39–50. | MR 2148459 | Zbl 02163150

[10] N.Boston, Embedding 2-groups in groups generated by involutions. J. Algebra 300 (2006), 73–76. | MR 2228635 | Zbl 1102.12002

[11] N.Boston, C.R.Leedham-Green, Explicit computation of Galois p-groups unramified at p. J. Algebra 256 (2002), 402–413. | MR 1939112 | Zbl 1016.11051

[12] N.Boston, C.R.Leedham-Green, Counterexamples to a conjecture of Lemmermeyer. Arch. Math. Basel 72 (1999), 177–179. | MR 1671275 | Zbl 0922.11095

[13] D.J.Broadhurst, On the enumeration of irreducible k-fold Euler sums and their roles in knot theory and field theory. J. Math. Phys. (to appear).

[14] M.R.Bush, Computation of Galois groups associated to the 2-class towers of some quadratic fields. J. Number Theory 100 (2003), 313–325. | MR 1978459 | Zbl 1039.11091

[15] H. Cohen, H. W. Lenstra, Jr., Heuristics on class groups. Lecture Notes in Math. 1086, Springer-Verlag, Berlin 1984. | MR 750661 | Zbl 0532.12008

[16] H.Cohn, J.C.Lagarias, On the existence of fields governing the 2-invariants of the classgroup of Q(dp) as p varies. Math. Comp. 37 (1983), 711–730. | MR 717716 | Zbl 0523.12002

[17] B.Eick, H.Koch, On maximal 2-extensions of Q with given ramification. Proc. St. Petersburg Math. Soc. (Russian), American Math. Soc. Translations (English) (to appear). | MR 2276852

[18] J.-M.Fontaine, B.Mazur, Geometric Galois representations. Proceedings of a conference held in Hong Kong, December 18-21, 1993,” International Press, Cambridge, MA and Hong Kong. | Zbl 0839.14011

[19] J.Gilbey, Permutation groups, a related algebra and a conjecture of Cameron. Journal of Algebraic Combinatorics, 19 (2004) 25–45. | MR 2056765 | Zbl 1080.20002

[20] E.S.Golod, I.R.Shafarevich, On class field towers (Russian). Izv. Akad. Nauk. SSSR 28 (1964), 261–272. English translation in AMS Trans. (2) 48, 91–102. | MR 161852 | Zbl 0148.28101

[21] R.Grigorchuk, Just infinite branch groups. New Horizons in pro-p Groups, Birkhauser, Boston 2000. | MR 1765119 | Zbl 0982.20024

[22] R.Grigorchuk, A.Zuk, On a torsion-free weakly branch group defined by a three state automaton. Internat. J. Algebra Comput., 12 (2000), 223–246. | MR 1902367 | Zbl 1070.20031

[23] F.Hajir, C.Maire, Tamely ramified towers and discriminant bounds for number fields. II. J. Symbolic Comput. 33 (2002), 415–423. | MR 1890578 | Zbl 1086.11051

[24] G.Havas, M.F.Newman, E.A.O’Brien, Groups of deficiency zero. Geometric and Computational Perspectives on Infinite Groups, DIMACS Series in Discrete Mathematics and Theoretical Computer Science 25 (1996) 53–67. | Zbl 0849.20019

[25] H.Kisilevsky, Number fields with class number congruent to 4(mod8) and Hilbert’s theorem 94. J. Number Theory 8 (1976), no. 3, 271–279 | Zbl 0334.12019

[26] H.Koch, Galois theory of p-extensions. Springer Monographs in Mathematics. Springer-Verlag, Berlin, 2002. | MR 1930372 | Zbl 1023.11002

[27] H.Koch, B.Venkov, The p-tower of class fields for an imaginary quadratic field (Russian). Zap. Nau. Sem. Leningrad Otdel. Mat. Inst. Steklov (LOMI) 46 (1974), 5–13. | MR 382235 | Zbl 0335.12022

[28] J.Labute, Mild pro-p-groups and Galois groups of p-extensions of Q. J. Reine Angew. Math. (to appear). | MR 2254811 | Zbl 05080511

[29] A.Lubotzky, Group presentations, p-adic analytic groups and lattices in SL 2 (C). Ann. Math. 118 (1983), 115–130. | MR 707163 | Zbl 0541.20020

[30] J.Mennicke, Einige endliche Gruppe mit drei Erzeugenden und drei Relationen. Arch. Math. X (1959), 409–418. | MR 113946 | Zbl 0089.01405

[31] E.A.O’Brien, The p-group generation algorithm. J. Symbolic Comput. 9 (1990), 677–698. | Zbl 0736.20001

[32] R.W.K.Odoni, Realising wreath products of cyclic groups as Galois groups. Mathematika 35 (1988), 101–113. | MR 962740 | Zbl 0662.12010

[33] I.R.Shafarevich, Extensions with prescribed ramification points (Russian). IHES Publ. Math. 18 (1964), 71–95. | Numdam | MR 176979

[34] M.Stoll, Galois groups over Q of some iterated polynomials. Arch. Math. (Basel) 59 (1992), 239–244. | MR 1174401 | Zbl 0758.11045

[35] G.Willis, Totally disconnected, nilpotent, locally compact groups. Bull. Austral. Math. Soc. 55 (1997), 143–146. | MR 1428537 | Zbl 0893.22001

[36] E.Zelmanov, On groups satisfying the Golod-Shafarevich condition. New horizons in pro-p groups, Birkhaüser Boston, Boston, MA, 2000. | MR 1765122 | Zbl 0974.20022

[37] A.Zubkov, Non-abelian free pro-p-group are not represented by 2×2-matrices. Siberian Math.J, 28 (1987), 64–69. | Zbl 0653.20026