We prove that, for all integers
Nous démontrons que pour tout entier
@article{JTNB_2007__19_1_311_0, author = {Wadim Zudilin}, title = {A new lower bound for ${\Vert (3/2)^k\Vert }$}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {311--323}, publisher = {Universit\'e Bordeaux 1}, volume = {19}, number = {1}, year = {2007}, doi = {10.5802/jtnb.588}, mrnumber = {2332068}, zbl = {1127.11049}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.588/} }
TY - JOUR AU - Wadim Zudilin TI - A new lower bound for ${\Vert (3/2)^k\Vert }$ JO - Journal de théorie des nombres de Bordeaux PY - 2007 SP - 311 EP - 323 VL - 19 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.588/ DO - 10.5802/jtnb.588 LA - en ID - JTNB_2007__19_1_311_0 ER -
Wadim Zudilin. A new lower bound for ${\Vert (3/2)^k\Vert }$. Journal de théorie des nombres de Bordeaux, Tome 19 (2007) no. 1, pp. 311-323. doi : 10.5802/jtnb.588. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.588/
[1] A. Baker, J. Coates, Fractional parts of powers of rationals. Math. Proc. Cambridge Philos. Soc. 77 (1975), 269–279. | MR | Zbl
[2] M. A. Bennett, Fractional parts of powers of rational numbers. Math. Proc. Cambridge Philos. Soc. 114 (1993), 191–201. | MR | Zbl
[3] M. A. Bennett, An ideal Waring problem with restricted summands. Acta Arith. 66 (1994), 125–132. | MR | Zbl
[4] F. Beukers, Fractional parts of powers of rationals. Math. Proc. Cambridge Philos. Soc. 90 (1981), 13–20. | MR | Zbl
[5] G. V. Chudnovsky, Padé approximations to the generalized hypergeometric functions. I. J. Math. Pures Appl. (9) 58 (1979), 445–476. | MR | Zbl
[6] F. Delmer, J.-M. Deshouillers, The computation of
[7] A. K. Dubickas, A lower bound for the quantity
[8] L. Habsieger, Explicit lower bounds for
[9] J. Kubina, M. Wunderlich, Extending Waring’s conjecture up to
[10] K. Mahler, On the fractional parts of powers of real numbers. Mathematika 4 (1957), 122–124. | MR | Zbl
[11] L. J. Slater, Generalized hypergeometric functions. Cambridge University Press, 1966. | MR | Zbl
[12] R. C. Vaughan, The Hardy–Littlewood method. Cambridge Tracts in Mathematics 125, Cambridge University Press, 1997. | MR | Zbl
[13] W. Zudilin, Ramanujan-type formulae and irrationality measures of certain multiples of
- Fractional parts of powers of real algebraic numbers, Comptes Rendus. Mathématique. Académie des Sciences, Paris, Volume 360 (2022), pp. 459-466 | DOI:10.5802/crmath.314 | Zbl:1495.11084
- On a lower bound for
, International Journal of Number Theory, Volume 11 (2015) no. 1, pp. 299-309 | DOI:10.1142/s1793042115500177 | Zbl:1326.11034 - On the Fractional Parts of Roots of Positive Real Numbers, The American Mathematical Monthly, Volume 120 (2013) no. 5, p. 409 | DOI:10.4169/amer.math.monthly.120.05.409
- The Thirties, Rational Number Theory in the 20th Century (2012), p. 195 | DOI:10.1007/978-0-85729-532-3_4
- Effectivization of a lower bound for
, Mathematical Notes, Volume 85 (2009) no. 6, pp. 877-885 | DOI:10.1134/s0001434609050289 | Zbl:1230.11088 - Rational approximations of the number
, Mathematical Notes, Volume 86 (2009) no. 5, pp. 693-703 | DOI:10.1134/s0001434609110121 | Zbl:1205.11082 - Эффективизация нижней оценки для
, Математические заметки, Volume 85 (2009) no. 6, p. 927 | DOI:10.4213/mzm6192 - Рациональные приближения числа
, Математические заметки, Volume 86 (2009) no. 5, p. 736 | DOI:10.4213/mzm8516
Cité par 8 documents. Sources : Crossref, zbMATH