We prove that the Hausdorff dimension of the set of badly approximable systems of
Nous montrons que la dimension de Hausdorff de l’ensemble des systèmes mal approchables de
@article{JTNB_2006__18_2_421_0, author = {Simon Kristensen}, title = {Badly approximable systems of linear forms over a field of formal series}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {421--444}, publisher = {Universit\'e Bordeaux 1}, volume = {18}, number = {2}, year = {2006}, doi = {10.5802/jtnb.552}, mrnumber = {2289432}, zbl = {05135397}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.552/} }
TY - JOUR AU - Simon Kristensen TI - Badly approximable systems of linear forms over a field of formal series JO - Journal de théorie des nombres de Bordeaux PY - 2006 SP - 421 EP - 444 VL - 18 IS - 2 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.552/ DO - 10.5802/jtnb.552 LA - en ID - JTNB_2006__18_2_421_0 ER -
%0 Journal Article %A Simon Kristensen %T Badly approximable systems of linear forms over a field of formal series %J Journal de théorie des nombres de Bordeaux %D 2006 %P 421-444 %V 18 %N 2 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.552/ %R 10.5802/jtnb.552 %G en %F JTNB_2006__18_2_421_0
Simon Kristensen. Badly approximable systems of linear forms over a field of formal series. Journal de théorie des nombres de Bordeaux, Tome 18 (2006) no. 2, pp. 421-444. doi : 10.5802/jtnb.552. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.552/
[1] A. G. Abercrombie, Badly approximable
[2] M. Amou, A metrical result on transcendence measures in certain fields. J. Number Theory 59 (2) (1996), 389–397. | MR | Zbl
[3] J. W. S. Cassels, An introduction to the geometry of numbers. Springer-Verlag, Berlin, 1997. | MR | Zbl
[4] V. Jarník, Zur metrischen Theorie der diophantischen Approximationen. Prace Mat.–Fiz. (1928–1929), 91–106.
[5] S. Kristensen, On the well-approximable matrices over a field of formal series. Math. Proc. Cambridge Philos. Soc. 135 (2) (2003), 255–268. | MR | Zbl
[6] S. Lang, Algebra (2nd Edition). Addison-Wesley Publishing Co., Reading, Mass., 1984. | MR | Zbl
[7] K. Mahler, An analogue to Minkowski’s geometry of numbers in a field of series. Ann. of Math. (2) 42 (1941), 488–522. | MR | Zbl
[8] H. Niederreiter, M. Vielhaber, Linear complexity profiles: Hausdorff dimensions for almost perfect profiles and measures for general profiles. J. Complexity 13 (3) (1997), 353–383. | MR | Zbl
[9] W. M. Schmidt, On badly approximable numbers and certain games. Trans. Amer. Math. Soc. 123 (1966), 178–199. | MR | Zbl
[10] W. M. Schmidt, Badly approximable systems of linear forms, J. Number Theory 1 (1969), 139–154. | MR | Zbl
[11] V. G. Sprindžuk, Mahler’s problem in metric number theory. American Mathematical Society, Providence, R.I., 1969. | MR | Zbl
Cité par Sources :