For a prime and positive integers with , we show that , the number of simultaneous solutions in to , , , satisfies
When we obtain a precise asymptotic count on . This leads to the new twisted exponential sum bound
for trinomials , and to results on the average size of such sums.
Pour un nombre premier et des entiers positifs avec , nous montrons que , le nombre de solutions simultanées dans de , , , satisfait à
Quand , nous obtenons un comptage asymptotique précis de . Cela conduit à une nouvelle borne explicite pour des sommes d’exponentielles tordues
pour des trinômes , et à des résultats sur la valeur moyenne de telles sommes.
Todd Cochrane 1 ; Jeremy Coffelt 1 ; Christopher Pinner 1
@article{JTNB_2006__18_1_59_0,
author = {Todd Cochrane and Jeremy Coffelt and Christopher Pinner},
title = {A system of simultaneous congruences arising from trinomial exponential sums},
journal = {Journal de th\'eorie des nombres de Bordeaux},
pages = {59--72},
year = {2006},
publisher = {Universit\'e Bordeaux 1},
volume = {18},
number = {1},
doi = {10.5802/jtnb.533},
mrnumber = {2245875},
zbl = {05070447},
language = {en},
url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.533/}
}
TY - JOUR AU - Todd Cochrane AU - Jeremy Coffelt AU - Christopher Pinner TI - A system of simultaneous congruences arising from trinomial exponential sums JO - Journal de théorie des nombres de Bordeaux PY - 2006 SP - 59 EP - 72 VL - 18 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.533/ DO - 10.5802/jtnb.533 LA - en ID - JTNB_2006__18_1_59_0 ER -
%0 Journal Article %A Todd Cochrane %A Jeremy Coffelt %A Christopher Pinner %T A system of simultaneous congruences arising from trinomial exponential sums %J Journal de théorie des nombres de Bordeaux %D 2006 %P 59-72 %V 18 %N 1 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.533/ %R 10.5802/jtnb.533 %G en %F JTNB_2006__18_1_59_0
Todd Cochrane; Jeremy Coffelt; Christopher Pinner. A system of simultaneous congruences arising from trinomial exponential sums. Journal de théorie des nombres de Bordeaux, Tome 18 (2006) no. 1, pp. 59-72. doi: 10.5802/jtnb.533
[1] N. M. Akuliničev, Estimates for rational trigonometric sums of a special type. Doklady Acad. Sci. USSR 161 (1965), 743–745. English trans in Doklady 161, no. 4 (1965), 480–482. | Zbl | MR
[2] T. Cochrane & C. Pinner, An improved Mordell type bound for exponential sums. Proc. Amer. Math. Soc. 133 (2005), 313–320. | Zbl | MR
[3] T. Cochrane, J. Coffelt & C. Pinner, A further refinement of Mordell’s bound on exponential sums. Acta Arith. 116 (2005), 35–41. | Zbl | MR
[4] R. Lidl & H. Niederreiter, Finite Fields. Encyclopedia of mathematics and its applications, Addison-Wesley, 1983. | Zbl | MR
[5] L. J. Mordell, On a sum analogous to a Gauss’s sum. Quart. J. Math. 3 (1932), 161–167. | Zbl
[6] A. Weil, On some exponential sums. Proc. Nat. Acad. Sci. U.S.A. 34 (1948), 204–207. | Zbl | MR
[7] T. Wooley, A note on simultaneous congruences. J. Number Theory 58 (1996), no. 2, 288–297. | Zbl | MR
Cité par Sources :