L’objectif de cet article est de proposer un lien entre plusieurs aspects classiques de la théorie des formes quadratiques entières. Dans un premier temps, on étudie en détail les propriétés des formes quadratiques binaires qui paramétrisent les solutions des équations quadratiques ternaires. En particulier, on donne un moyen simple de construire une paramétrisation à partir d’une solution particulière, dont les invariants ne dépendent que de l’équation de départ. Cette paramétrisation permet de simplifier l’algorithme de la
Dans un deuxième temps, on considère
Our goal in this paper is to give a link between different classical aspects of the theory of integral quadratic forms. First, we investigate the properties of the binary quadratic forms involved in the parametrization of the solutions of ternary quadratic equations. In particular, we exhibit a simple rule to obtain a parametrization from a particular solution, such that its invariants only depend on the original equation. Used in the context of elliptic curves, this parametrization simplifies the algorithm of
Secondly, we consider a primitive quadratic form
Denis Simon 1
@article{JTNB_2006__18_1_265_0, author = {Denis Simon}, title = {Sur la param\'etrisation des solutions des \'equations quadratiques}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {265--283}, publisher = {Universit\'e Bordeaux 1}, volume = {18}, number = {1}, year = {2006}, doi = {10.5802/jtnb.543}, mrnumber = {2245885}, zbl = {05070457}, language = {fr}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.543/} }
TY - JOUR AU - Denis Simon TI - Sur la paramétrisation des solutions des équations quadratiques JO - Journal de théorie des nombres de Bordeaux PY - 2006 SP - 265 EP - 283 VL - 18 IS - 1 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.543/ DO - 10.5802/jtnb.543 LA - fr ID - JTNB_2006__18_1_265_0 ER -
%0 Journal Article %A Denis Simon %T Sur la paramétrisation des solutions des équations quadratiques %J Journal de théorie des nombres de Bordeaux %D 2006 %P 265-283 %V 18 %N 1 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.543/ %R 10.5802/jtnb.543 %G fr %F JTNB_2006__18_1_265_0
Denis Simon. Sur la paramétrisation des solutions des équations quadratiques. Journal de théorie des nombres de Bordeaux, Tome 18 (2006) no. 1, pp. 265-283. doi : 10.5802/jtnb.543. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.543/
[1] W. Bosma, P. Stevenhagen, On the computation of quadratic
[2] J.W.S. Cassels, Rational Quadratic Forms. L.M.S. Monographs, Academic Press (1978). | MR | Zbl
[3] H. Cohen, A Course in Computational Algebraic Number Theory. Graduate Texts in Math. 138, Third corrected printing, Springer–Verlag (1996). | MR | Zbl
[4] D. Cox, Primes of the form
[5] J. Cremona, D. Rusin, Efficient solution of rational conics. Math. Comp. 72 (2003), 1417–1441. | MR | Zbl
[6] K.F. Gauss, Recherches Arithmétiques. Poullet-Delisle, A.C.M. (trad.), A. Blanchard, 1953. | Zbl
[7] K. Hardy, K. Williams, The squareroot of an ambiguous form in the principal genus. Proc. Edinburgh Math. Soc. (2) 36 (1993), no. 1, 145–150. | MR | Zbl
[8] J.C. Lagarias, Worst-case complexity bounds for algorithms in the theory of integral quadratic forms. J. Ameri. Math. Soc. 2 (1989), no 4, 143–186. | Zbl
[9] D. Shanks, Gauss’s ternary form reduction and the
[10] D. Simon, Computing the rank of elliptic curves over number fields. London Math. Soc. Journal of Computation and Mathematics, vol 5 (2002) 7–17. | MR | Zbl
[11] D. Simon, Solving quadratic equations using reduced unimodular quadratic forms. Math. Comp. 74, no 251 (2005), 1531–1543. | MR | Zbl
[12] N.P. Smart, The algorithmic resolution of Diophantine equations. London Math. Soc. Student Texts 41, Cambridge University Press, 1998. | MR | Zbl
Cité par Sources :