General methods from [3] are applied to give good upper bounds on the Euclidean minimum of real quadratic fields and totally real cyclotomic fields of prime power discriminant.
Le but de cet article est de donner des bornes pour le minimum euclidien des corps quadratiques réels et des corps cyclotomiques réels dont le conducteur est une puissance d’un nombre premier.
@article{JTNB_2005__17_2_437_0, author = {Eva Bayer-Fluckiger and Gabriele Nebe}, title = {On the {Euclidean} minimum of some real number fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {437--454}, publisher = {Universit\'e Bordeaux 1}, volume = {17}, number = {2}, year = {2005}, doi = {10.5802/jtnb.500}, mrnumber = {2211300}, zbl = {1161.11032}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.500/} }
TY - JOUR AU - Eva Bayer-Fluckiger AU - Gabriele Nebe TI - On the Euclidean minimum of some real number fields JO - Journal de théorie des nombres de Bordeaux PY - 2005 SP - 437 EP - 454 VL - 17 IS - 2 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.500/ DO - 10.5802/jtnb.500 LA - en ID - JTNB_2005__17_2_437_0 ER -
%0 Journal Article %A Eva Bayer-Fluckiger %A Gabriele Nebe %T On the Euclidean minimum of some real number fields %J Journal de théorie des nombres de Bordeaux %D 2005 %P 437-454 %V 17 %N 2 %I Université Bordeaux 1 %U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.500/ %R 10.5802/jtnb.500 %G en %F JTNB_2005__17_2_437_0
Eva Bayer-Fluckiger; Gabriele Nebe. On the Euclidean minimum of some real number fields. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 2, pp. 437-454. doi : 10.5802/jtnb.500. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.500/
[1] E. Bayer-Fluckiger, Lattices and number fields. Contemp. Math. 241 (1999), 69–84. | MR | Zbl
[2] E. Bayer-Fluckiger, Ideal lattices. A panorama of number theory or the view from Baker’s garden (Zürich, 1999), 168–184, Cambridge Univ. Press, Cambridge, 2002. | Zbl
[3] E. Bayer-Fluckiger, Upper bounds for Euclidean minima. J. Number Theory (to appear). | MR | Zbl
[4] J.W.S. Cassels, An introduction to the geometry of numbers. Springer Grundlehren 99 (1971). | MR | Zbl
[5] J.H. Conway, N.J.A. Sloane, Low Dimensional Lattices VI: Voronoi Reduction of Three-Dimensional Lattices. Proc. Royal Soc. London, Series A 436 (1992), 55–68. | MR | Zbl
[6] J.H. Conway, N.J.A. Sloane, Sphere packings, lattices and groups. Springer Grundlehren 290 (1988). | MR | Zbl
[7] P.M. Gruber, C.G. Lekkerkerker, Geometry of Numbers. North Holland (second edition, 1987) | MR | Zbl
[8] The KANT Database of fields. http://www.math.tu-berlin.de/cgi-bin/kant/database.cgi.
[9] F. Lemmermeyer, The Euclidean algorithm in algebraic number fields. Expo. Math. 13 (1995), 385–416. (updated version available via http://public.csusm.edu/public/FranzL/publ.html). | MR | Zbl
[10] C.T. McMullen, Minkowski’s conjecture, well-rounded lattices and topological dimension., Journal of the American Mathematical Society 18 (3) (2005), 711–734. | Zbl
[11] R. Quême, A computer algorithm for finding new euclidean number fields. J. Théorie de Nombres de Bordeaux 10 (1998), 33–48. | EuDML | Numdam | MR | Zbl
[12] E. Weiss, Algebraic number theory. McGraw-Hill Book Company (1963). | MR | Zbl
[13] M. Dutour, A. Schürmann, F. Vallentin, A Generalization of Voronoi’s Reduction Theory and Applications, (preprint 2005). | Zbl
- Rotated
-lattice codes of full diversity, Advances in Mathematics of Communications, Volume 16 (2022) no. 3, pp. 439-447 | DOI:10.3934/amc.2020118 | Zbl:1502.11077 - Algebraic constructions of rotated unimodular lattices and direct sum of Barnes-Wall lattices, Journal of Algebra and its Applications, Volume 20 (2021) no. 3, p. 23 (Id/No 2150029) | DOI:10.1142/s0219498821500298 | Zbl:1471.11208
- Rotated
-lattices in dimensions power of 3, Journal of Algebra, Combinatorics, Discrete Structures and Applications, Volume 8 (2021) no. 3, pp. 151-160 | Zbl:1483.11135 - Trace forms of certain subfields of cyclotomic fields and applications, Journal of Algebra Combinatorics Discrete Structures and Applications, Volume 7 (2020) no. 2, p. 141 | DOI:10.13069/jacodesmath.729440
- Trace forms of certain subfields of cyclotomic fields and applications, Journal of Algebra, Combinatorics, Discrete Structures and Applications, Volume 7 (2020) no. 2, pp. 141-160 | Zbl:1457.11097
- Constructions of full diversity
-lattices for all , Rocky Mountain Journal of Mathematics, Volume 50 (2020) no. 4, pp. 1137-1150 | DOI:10.1216/rmj.2020.50.1137 | Zbl:1453.11089 - Constructions of dense lattices of full diversity, TEMA. Tendências em Matemática Aplicada e Computacional, Volume 21 (2020) no. 2, pp. 299-311 | DOI:10.5540/tema.2020.021.02.0002990299 | Zbl:1525.11076
- Well-rounded twists of ideal lattices from real quadratic fields, Journal of Number Theory, Volume 196 (2019), pp. 168-196 | DOI:10.1016/j.jnt.2018.09.017 | Zbl:1442.11102
- Constructions of rotated lattice constellations in dimensions power of 3, Journal of Algebra and its Applications, Volume 17 (2018) no. 9, p. 17 (Id/No 1850175) | DOI:10.1142/s021949881850175x | Zbl:1440.11118
- , 2016 9th International Symposium on Turbo Codes and Iterative Information Processing (ISTC) (2016), p. 305 | DOI:10.1109/istc.2016.7593126
- Inhomogeneous minima of mixed signature lattices, Journal of Number Theory, Volume 167 (2016), pp. 88-103 | DOI:10.1016/j.jnt.2016.03.010 | Zbl:1419.11096
- Upper bounds for the Euclidean minima of abelian fields, Journal de Théorie des Nombres de Bordeaux, Volume 27 (2015) no. 3, pp. 689-697 | DOI:10.5802/jtnb.919 | Zbl:1398.11132
- Algebraic constructions of densest lattices, Journal of Algebra, Volume 429 (2015), pp. 218-235 | DOI:10.1016/j.jalgebra.2014.12.044 | Zbl:1358.11076
- Lattices from maximal orders into quaternion algebras, Journal of Pure and Applied Algebra, Volume 219 (2015) no. 4, pp. 687-702 | DOI:10.1016/j.jpaa.2014.04.025 | Zbl:1394.11076
- Stability of ideal lattices from quadratic number fields, The Ramanujan Journal, Volume 37 (2015) no. 2, pp. 243-256 | DOI:10.1007/s11139-014-9565-8 | Zbl:1325.11061
- On rotated
-lattices constructed via totally real number fields, Archiv der Mathematik, Volume 100 (2013) no. 4, pp. 323-332 | DOI:10.1007/s00013-013-0501-8 | Zbl:1294.11115 - On well-rounded ideal lattices. II, International Journal of Number Theory, Volume 9 (2013) no. 1, pp. 139-154 | DOI:10.1142/s1793042112501291 | Zbl:1296.11085
- Perfect unary forms over real quadratic fields, Journal de Théorie des Nombres de Bordeaux, Volume 25 (2013) no. 3, pp. 759-775 | DOI:10.5802/jtnb.854 | Zbl:1318.11051
- Upper bounds for the Euclidean minima of abelian fields of odd prime power conductor, Mathematische Annalen, Volume 357 (2013) no. 3, pp. 1071-1089 | DOI:10.1007/s00208-013-0932-3 | Zbl:1278.11098
- On well-rounded ideal lattices, International Journal of Number Theory, Volume 8 (2012) no. 1, pp. 189-206 | DOI:10.1142/s179304211250011x | Zbl:1292.11077
- Rotated
-lattices, Journal of Number Theory, Volume 132 (2012) no. 11, pp. 2397-2406 | DOI:10.1016/j.jnt.2012.05.002 | Zbl:1272.11084 - A generalization of Voronoi's reduction theory and its application, Duke Mathematical Journal, Volume 142 (2008) no. 1, pp. 127-164 | DOI:10.1215/00127094-2008-003 | Zbl:1186.11040
- Constructions of Orthonormal Lattices and Quaternion Division Algebras for Totally Real Number Fields, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Volume 4851 (2007), p. 138 | DOI:10.1007/978-3-540-77224-8_18
- Ideal lattices over totally real number fields and Euclidean minima, Archiv der Mathematik, Volume 86 (2006) no. 3, pp. 217-225 | DOI:10.1007/s00013-005-1469-9 | Zbl:1137.11046
- Upper bounds for Euclidean minima of algebraic number fields, Journal of Number Theory, Volume 121 (2006) no. 2, pp. 305-323 | DOI:10.1016/j.jnt.2006.03.002 | Zbl:1130.11066
- Minkowski's conjecture, well-rounded lattices and topological dimension, Journal of the American Mathematical Society, Volume 18 (2005) no. 3, pp. 711-734 | DOI:10.1090/s0894-0347-05-00483-2 | Zbl:1132.11034
Cité par 26 documents. Sources : Crossref, zbMATH