On the Euclidean minimum of some real number fields
Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 2, pp. 437-454.

General methods from [3] are applied to give good upper bounds on the Euclidean minimum of real quadratic fields and totally real cyclotomic fields of prime power discriminant.

Le but de cet article est de donner des bornes pour le minimum euclidien des corps quadratiques réels et des corps cyclotomiques réels dont le conducteur est une puissance d’un nombre premier.

DOI : 10.5802/jtnb.500

Eva Bayer-Fluckiger 1 ; Gabriele Nebe 2

1 Département de Mathématiques EPF Lausanne 1015 Lausanne Switzerland
2 Lehrstuhl D für Mathematik RWTH Aachen 52056 Aachen Germany
@article{JTNB_2005__17_2_437_0,
     author = {Eva Bayer-Fluckiger and Gabriele Nebe},
     title = {On the {Euclidean} minimum of some real number fields},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {437--454},
     publisher = {Universit\'e Bordeaux 1},
     volume = {17},
     number = {2},
     year = {2005},
     doi = {10.5802/jtnb.500},
     mrnumber = {2211300},
     zbl = {1161.11032},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.500/}
}
TY  - JOUR
AU  - Eva Bayer-Fluckiger
AU  - Gabriele Nebe
TI  - On the Euclidean minimum of some real number fields
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2005
SP  - 437
EP  - 454
VL  - 17
IS  - 2
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.500/
DO  - 10.5802/jtnb.500
LA  - en
ID  - JTNB_2005__17_2_437_0
ER  - 
%0 Journal Article
%A Eva Bayer-Fluckiger
%A Gabriele Nebe
%T On the Euclidean minimum of some real number fields
%J Journal de théorie des nombres de Bordeaux
%D 2005
%P 437-454
%V 17
%N 2
%I Université Bordeaux 1
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.500/
%R 10.5802/jtnb.500
%G en
%F JTNB_2005__17_2_437_0
Eva Bayer-Fluckiger; Gabriele Nebe. On the Euclidean minimum of some real number fields. Journal de théorie des nombres de Bordeaux, Tome 17 (2005) no. 2, pp. 437-454. doi : 10.5802/jtnb.500. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.500/

[1] E. Bayer-Fluckiger, Lattices and number fields. Contemp. Math. 241 (1999), 69–84. | MR | Zbl

[2] E. Bayer-Fluckiger, Ideal lattices. A panorama of number theory or the view from Baker’s garden (Zürich, 1999), 168–184, Cambridge Univ. Press, Cambridge, 2002. | Zbl

[3] E. Bayer-Fluckiger, Upper bounds for Euclidean minima. J. Number Theory (to appear). | MR | Zbl

[4] J.W.S. Cassels, An introduction to the geometry of numbers. Springer Grundlehren 99 (1971). | MR | Zbl

[5] J.H. Conway, N.J.A. Sloane, Low Dimensional Lattices VI: Voronoi Reduction of Three-Dimensional Lattices. Proc. Royal Soc. London, Series A 436 (1992), 55–68. | MR | Zbl

[6] J.H. Conway, N.J.A. Sloane, Sphere packings, lattices and groups. Springer Grundlehren 290 (1988). | MR | Zbl

[7] P.M. Gruber, C.G. Lekkerkerker, Geometry of Numbers. North Holland (second edition, 1987) | MR | Zbl

[8] The KANT Database of fields. http://www.math.tu-berlin.de/cgi-bin/kant/database.cgi.

[9] F. Lemmermeyer, The Euclidean algorithm in algebraic number fields. Expo. Math. 13 (1995), 385–416. (updated version available via http://public.csusm.edu/public/FranzL/publ.html). | MR | Zbl

[10] C.T. McMullen, Minkowski’s conjecture, well-rounded lattices and topological dimension., Journal of the American Mathematical Society 18 (3) (2005), 711–734. | Zbl

[11] R. Quême, A computer algorithm for finding new euclidean number fields. J. Théorie de Nombres de Bordeaux 10 (1998), 33–48. | EuDML | Numdam | MR | Zbl

[12] E. Weiss, Algebraic number theory. McGraw-Hill Book Company (1963). | MR | Zbl

[13] M. Dutour, A. Schürmann, F. Vallentin, A Generalization of Voronoi’s Reduction Theory and Applications, (preprint 2005). | Zbl

  • Agnaldo José Ferrari; Tatiana Miguel Rodrigues De Souza Rotated An-lattice codes of full diversity, Advances in Mathematics of Communications, Volume 16 (2022) no. 3, pp. 439-447 | DOI:10.3934/amc.2020118 | Zbl:1502.11077
  • João Eloir Strapasson; Agnaldo José Ferrari; Grasiele Cristiane Jorge; Sueli Irene Rodrigues Costa Algebraic constructions of rotated unimodular lattices and direct sum of Barnes-Wall lattices, Journal of Algebra and its Applications, Volume 20 (2021) no. 3, p. 23 (Id/No 2150029) | DOI:10.1142/s0219498821500298 | Zbl:1471.11208
  • Agnaldo J. Ferrari; Grasiele C. Jorge; Antonio A. de Andrade Rotated Dn-lattices in dimensions power of 3, Journal of Algebra, Combinatorics, Discrete Structures and Applications, Volume 8 (2021) no. 3, pp. 151-160 | Zbl:1483.11135
  • Agnaldo JOSÉ FERRARI; Antonio APARECIDO DE ANDRADE; Robson RICARDO DE ARAUJO; José CARMELO INTERLANDO Trace forms of certain subfields of cyclotomic fields and applications, Journal of Algebra Combinatorics Discrete Structures and Applications, Volume 7 (2020) no. 2, p. 141 | DOI:10.13069/jacodesmath.729440
  • Agnaldo José Ferrari; Antonio Aparecido De Andrade; Robson Ricardo De Araujo; José Carmelo Interlando Trace forms of certain subfields of cyclotomic fields and applications, Journal of Algebra, Combinatorics, Discrete Structures and Applications, Volume 7 (2020) no. 2, pp. 141-160 | Zbl:1457.11097
  • Robson R. de Araujo; Grasiele C. Jorge Constructions of full diversity Dn-lattices for all n, Rocky Mountain Journal of Mathematics, Volume 50 (2020) no. 4, pp. 1137-1150 | DOI:10.1216/rmj.2020.50.1137 | Zbl:1453.11089
  • A. A. Andrade; A. J. Ferrari; J. C. Interlando; R. R. Araujo Constructions of dense lattices of full diversity, TEMA. Tendências em Matemática Aplicada e Computacional, Volume 21 (2020) no. 2, pp. 299-311 | DOI:10.5540/tema.2020.021.02.0002990299 | Zbl:1525.11076
  • Mohamed Taoufiq Damir; David Karpuk Well-rounded twists of ideal lattices from real quadratic fields, Journal of Number Theory, Volume 196 (2019), pp. 168-196 | DOI:10.1016/j.jnt.2018.09.017 | Zbl:1442.11102
  • Agnaldo José Ferrari; Antonio Aparecido de Andrade Constructions of rotated lattice constellations in dimensions power of 3, Journal of Algebra and its Applications, Volume 17 (2018) no. 9, p. 17 (Id/No 1850175) | DOI:10.1142/s021949881850175x | Zbl:1440.11118
  • Joseph J. Boutros; Jean-Claude Belfiore, 2016 9th International Symposium on Turbo Codes and Iterative Information Processing (ISTC) (2016), p. 305 | DOI:10.1109/istc.2016.7593126
  • Eva Bayer-Fluckiger; Martino Borello; Peter Jossen Inhomogeneous minima of mixed signature lattices, Journal of Number Theory, Volume 167 (2016), pp. 88-103 | DOI:10.1016/j.jnt.2016.03.010 | Zbl:1419.11096
  • Eva Bayer-Fluckiger; Piotr Maciak Upper bounds for the Euclidean minima of abelian fields, Journal de Théorie des Nombres de Bordeaux, Volume 27 (2015) no. 3, pp. 689-697 | DOI:10.5802/jtnb.919 | Zbl:1398.11132
  • Grasiele C. Jorge; Antonio A. de Andrade; Sueli I. R. Costa; João E. Strapasson Algebraic constructions of densest lattices, Journal of Algebra, Volume 429 (2015), pp. 218-235 | DOI:10.1016/j.jalgebra.2014.12.044 | Zbl:1358.11076
  • C. Alves; J.-C. Belfiore Lattices from maximal orders into quaternion algebras, Journal of Pure and Applied Algebra, Volume 219 (2015) no. 4, pp. 687-702 | DOI:10.1016/j.jpaa.2014.04.025 | Zbl:1394.11076
  • Lenny Fukshansky Stability of ideal lattices from quadratic number fields, The Ramanujan Journal, Volume 37 (2015) no. 2, pp. 243-256 | DOI:10.1007/s11139-014-9565-8 | Zbl:1325.11061
  • Grasiele C. Jorge; Sueli I. R. Costa On rotated Dn-lattices constructed via totally real number fields, Archiv der Mathematik, Volume 100 (2013) no. 4, pp. 323-332 | DOI:10.1007/s00013-013-0501-8 | Zbl:1294.11115
  • Lenny Fukshansky; Glenn Henshaw; Philip Liao; Matthew Prince; Xun Sun; Samuel Whitehead On well-rounded ideal lattices. II, International Journal of Number Theory, Volume 9 (2013) no. 1, pp. 139-154 | DOI:10.1142/s1793042112501291 | Zbl:1296.11085
  • Dan Yasaki Perfect unary forms over real quadratic fields, Journal de Théorie des Nombres de Bordeaux, Volume 25 (2013) no. 3, pp. 759-775 | DOI:10.5802/jtnb.854 | Zbl:1318.11051
  • Eva Bayer-Fluckiger; Piotr Maciak Upper bounds for the Euclidean minima of abelian fields of odd prime power conductor, Mathematische Annalen, Volume 357 (2013) no. 3, pp. 1071-1089 | DOI:10.1007/s00208-013-0932-3 | Zbl:1278.11098
  • Lenny Fukshansky; Kathleen Petersen On well-rounded ideal lattices, International Journal of Number Theory, Volume 8 (2012) no. 1, pp. 189-206 | DOI:10.1142/s179304211250011x | Zbl:1292.11077
  • Grasiele C. Jorge; Agnaldo J. Ferrari; Sueli I. R. Costa Rotated Dn-lattices, Journal of Number Theory, Volume 132 (2012) no. 11, pp. 2397-2406 | DOI:10.1016/j.jnt.2012.05.002 | Zbl:1272.11084
  • Mathieu Dutour Sikirić; Achill Schürmann; Frank Vallentin A generalization of Voronoi's reduction theory and its application, Duke Mathematical Journal, Volume 142 (2008) no. 1, pp. 127-164 | DOI:10.1215/00127094-2008-003 | Zbl:1186.11040
  • B. A. Sethuraman; Frédérique Oggier Constructions of Orthonormal Lattices and Quaternion Division Algebras for Totally Real Number Fields, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, Volume 4851 (2007), p. 138 | DOI:10.1007/978-3-540-77224-8_18
  • Eva Bayer-Fluckiger; Ivan Suarez Ideal lattices over totally real number fields and Euclidean minima, Archiv der Mathematik, Volume 86 (2006) no. 3, pp. 217-225 | DOI:10.1007/s00013-005-1469-9 | Zbl:1137.11046
  • Eva Bayer-Fluckiger Upper bounds for Euclidean minima of algebraic number fields, Journal of Number Theory, Volume 121 (2006) no. 2, pp. 305-323 | DOI:10.1016/j.jnt.2006.03.002 | Zbl:1130.11066
  • Curtis T. McMullen Minkowski's conjecture, well-rounded lattices and topological dimension, Journal of the American Mathematical Society, Volume 18 (2005) no. 3, pp. 711-734 | DOI:10.1090/s0894-0347-05-00483-2 | Zbl:1132.11034

Cité par 26 documents. Sources : Crossref, zbMATH