Let
Soit
@article{JTNB_2004__16_3_569_0, author = {Veikko Ennola}, title = {Fundamental units in a family of cubic fields}, journal = {Journal de th\'eorie des nombres de Bordeaux}, pages = {569--575}, publisher = {Universit\'e Bordeaux 1}, volume = {16}, number = {3}, year = {2004}, doi = {10.5802/jtnb.461}, mrnumber = {2144958}, zbl = {1079.11056}, language = {en}, url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.461/} }
TY - JOUR AU - Veikko Ennola TI - Fundamental units in a family of cubic fields JO - Journal de théorie des nombres de Bordeaux PY - 2004 SP - 569 EP - 575 VL - 16 IS - 3 PB - Université Bordeaux 1 UR - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.461/ DO - 10.5802/jtnb.461 LA - en ID - JTNB_2004__16_3_569_0 ER -
Veikko Ennola. Fundamental units in a family of cubic fields. Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 3, pp. 569-575. doi : 10.5802/jtnb.461. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.461/
[1] B. N. Delone, D. K. Faddeev, The Theory of Irrationalities of the Third Degree. Trudy Mat. Inst. Steklov, vol. 11 (1940); English transl., Transl. Math. Monographs, vol. 10, Amer. Math. Soc., Providence, R. I., Second printing 1978. | MR | Zbl
[2] V. Ennola, Cubic number fields with exceptional units. Computational Number Theory (A. Pethö et al., eds.), de Gruyter, Berlin, 1991, pp. 103–128. | MR | Zbl
[3] H. G. Grundman, Systems of fundamental units in cubic orders. J. Number Theory 50 (1995), 119–127. | MR | Zbl
[4] M. Mignotte, N. Tzanakis, On a family of cubics. J. Number Theory 39 (1991), 41–49, Corrigendum and addendum, 41 (1992), 128. | MR | Zbl
[5] E. Thomas, Fundamental units for orders in certain cubic number fields. J. Reine Angew. Math. 310 (1979), 33–55. | MR | Zbl
- Arithmetic of cubic number fields: Jacobi-Perron, Pythagoras, and indecomposables, Journal of Number Theory, Volume 273 (2025), pp. 37-95 | DOI:10.1016/j.jnt.2024.12.001 | Zbl:7995933
- On a weak form of Ennola's conjecture about certain cubic number fields, Research in Number Theory, Volume 11 (2025) no. 2, p. 15 (Id/No 54) | DOI:10.1007/s40993-025-00627-9 | Zbl:8052200
- Universal Quadratic Forms, Small Norms, and Traces in Families of Number Fields, International Mathematics Research Notices, Volume 2023 (2023) no. 9, p. 7541 | DOI:10.1093/imrn/rnac073
- Trace and norm of indecomposable integers in cubic orders, The Ramanujan Journal, Volume 61 (2023) no. 4, pp. 1121-1144 | DOI:10.1007/s11139-022-00669-y | Zbl:1536.11178
- A generalization of simplest number fields and their integral basis, Acta Mathematica Hungarica, Volume 163 (2021) no. 2, pp. 437-461 | DOI:10.1007/s10474-020-01093-8 | Zbl:1474.11075
- On Ennola's conjecture on non-Galois cubic number fields with exceptional units, Moscow Mathematical Journal, Volume 21 (2021) no. 4, pp. 789-805 | Zbl:1480.11138
- Representation of the elements of the finite field
by fractions, Periodica Mathematica Hungarica, Volume 79 (2019) no. 2, p. 218 | DOI:10.1007/s10998-019-00291-4 - The positive discriminant case of Nagell's theorem for certain cubic orders, Journal of Number Theory, Volume 131 (2011) no. 3, pp. 470-486 | DOI:10.1016/j.jnt.2010.09.007 | Zbl:1219.11163
Cité par 8 documents. Sources : Crossref, zbMATH