Fundamental units in a family of cubic fields
Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 3, pp. 569-575.

Let 𝒪 be the maximal order of the cubic field generated by a zero ε of x3+(-1)x2-x-1 for , 3. We prove that ε,ε-1 is a fundamental pair of units for 𝒪, if [𝒪:[ε]]/3.

Soit 𝒪 l’ordre maximal du corps cubique engendré par une racine ε de l’equation x3+(-1)x2-x-1=0, où , 3. Nous prouvons que ε,ε-1 forment un système fondamental d’unités dans 𝒪, si [𝒪:[ε]]/3.

DOI : 10.5802/jtnb.461

Veikko Ennola 1

1 Department of Mathematics University of Turku FIN-20014, Finland
@article{JTNB_2004__16_3_569_0,
     author = {Veikko Ennola},
     title = {Fundamental units in a family of cubic fields},
     journal = {Journal de th\'eorie des nombres de Bordeaux},
     pages = {569--575},
     publisher = {Universit\'e Bordeaux 1},
     volume = {16},
     number = {3},
     year = {2004},
     doi = {10.5802/jtnb.461},
     mrnumber = {2144958},
     zbl = {1079.11056},
     language = {en},
     url = {https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.461/}
}
TY  - JOUR
AU  - Veikko Ennola
TI  - Fundamental units in a family of cubic fields
JO  - Journal de théorie des nombres de Bordeaux
PY  - 2004
SP  - 569
EP  - 575
VL  - 16
IS  - 3
PB  - Université Bordeaux 1
UR  - https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.461/
DO  - 10.5802/jtnb.461
LA  - en
ID  - JTNB_2004__16_3_569_0
ER  - 
%0 Journal Article
%A Veikko Ennola
%T Fundamental units in a family of cubic fields
%J Journal de théorie des nombres de Bordeaux
%D 2004
%P 569-575
%V 16
%N 3
%I Université Bordeaux 1
%U https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.461/
%R 10.5802/jtnb.461
%G en
%F JTNB_2004__16_3_569_0
Veikko Ennola. Fundamental units in a family of cubic fields. Journal de théorie des nombres de Bordeaux, Tome 16 (2004) no. 3, pp. 569-575. doi : 10.5802/jtnb.461. https://jtnb.centre-mersenne.org/articles/10.5802/jtnb.461/

[1] B. N. Delone, D. K. Faddeev, The Theory of Irrationalities of the Third Degree. Trudy Mat. Inst. Steklov, vol. 11 (1940); English transl., Transl. Math. Monographs, vol. 10, Amer. Math. Soc., Providence, R. I., Second printing 1978. | MR | Zbl

[2] V. Ennola, Cubic number fields with exceptional units. Computational Number Theory (A. Pethö et al., eds.), de Gruyter, Berlin, 1991, pp. 103–128. | MR | Zbl

[3] H. G. Grundman, Systems of fundamental units in cubic orders. J. Number Theory 50 (1995), 119–127. | MR | Zbl

[4] M. Mignotte, N. Tzanakis, On a family of cubics. J. Number Theory 39 (1991), 41–49, Corrigendum and addendum, 41 (1992), 128. | MR | Zbl

[5] E. Thomas, Fundamental units for orders in certain cubic number fields. J. Reine Angew. Math. 310 (1979), 33–55. | MR | Zbl

  • Vítězslav Kala; Ester Sgallová; Magdaléna Tinková Arithmetic of cubic number fields: Jacobi-Perron, Pythagoras, and indecomposables, Journal of Number Theory, Volume 273 (2025), pp. 37-95 | DOI:10.1016/j.jnt.2024.12.001 | Zbl:7995933
  • Jinwoo Choi; Dohyeong Kim On a weak form of Ennola's conjecture about certain cubic number fields, Research in Number Theory, Volume 11 (2025) no. 2, p. 15 (Id/No 54) | DOI:10.1007/s40993-025-00627-9 | Zbl:8052200
  • Vítězslav Kala; Magdaléna Tinková Universal Quadratic Forms, Small Norms, and Traces in Families of Number Fields, International Mathematics Research Notices, Volume 2023 (2023) no. 9, p. 7541 | DOI:10.1093/imrn/rnac073
  • Magdaléna Tinková Trace and norm of indecomposable integers in cubic orders, The Ramanujan Journal, Volume 61 (2023) no. 4, pp. 1121-1144 | DOI:10.1007/s11139-022-00669-y | Zbl:1536.11178
  • L. Remete A generalization of simplest number fields and their integral basis, Acta Mathematica Hungarica, Volume 163 (2021) no. 2, pp. 437-461 | DOI:10.1007/s10474-020-01093-8 | Zbl:1474.11075
  • Stéphane R. Louboutin On Ennola's conjecture on non-Galois cubic number fields with exceptional units, Moscow Mathematical Journal, Volume 21 (2021) no. 4, pp. 789-805 | Zbl:1480.11138
  • S. Louboutin; A. Murchio Representation of the elements of the finite field Fp by fractions, Periodica Mathematica Hungarica, Volume 79 (2019) no. 2, p. 218 | DOI:10.1007/s10998-019-00291-4
  • S. B. Mulay; Mark Spindler The positive discriminant case of Nagell's theorem for certain cubic orders, Journal of Number Theory, Volume 131 (2011) no. 3, pp. 470-486 | DOI:10.1016/j.jnt.2010.09.007 | Zbl:1219.11163

Cité par 8 documents. Sources : Crossref, zbMATH