Two complete and minimal systems associated with the zeros of the Riemann zeta function
Journal de Théorie des Nombres de Bordeaux, Tome 16 (2004) no. 1, pp. 65-94.

Nous relions trois thèmes restés jusqu’alors distincts : les propriétés hilbertiennes des zéros de Riemann, la “formule duale de Poisson” de Duffin-Weinberger (que nous appelons formule de co-Poisson), les espaces de fonctions entières “de Sonine” définis et étudiés par de Branges. Nous déterminons dans quels espaces de Sonine (étendus) les zéros forment un système complet, ou minimal. Nous obtenons des résultats généraux concernant la distribution des zéros des fonctions entières de de Branges-Sonine. Nous attirons l’attention sur certaines distributions liées à la transformation de Fourier et qui sont apparues dans nos travaux antérieurs.

We link together three themes which had remained separated so far: the Hilbert space properties of the Riemann zeros, the “dual Poisson formula” of Duffin-Weinberger (also named by us co-Poisson formula), and the “Sonine spaces” of entire functions defined and studied by de Branges. We determine in which (extended) Sonine spaces the zeros define a complete, or minimal, system. We obtain some general results dealing with the distribution of the zeros of the de-Branges-Sonine entire functions. We draw attention onto some distributions associated with the Fourier transform and which we introduced in our earlier works.

Publié le : 2008-12-02
DOI : https://doi.org/10.5802/jtnb.434
Mots clés: Riemann zeta function; Hilbert spaces; Fourier Transform
@article{JTNB_2004__16_1_65_0,
     author = {Jean-Fran\c cois Burnol},
     title = {Two complete and minimal systems associated with the zeros of the Riemann zeta function},
     journal = {Journal de Th\'eorie des Nombres de Bordeaux},
     pages = {65--94},
     publisher = {Universit\'e Bordeaux 1},
     volume = {16},
     number = {1},
     year = {2004},
     doi = {10.5802/jtnb.434},
     mrnumber = {2145573},
     zbl = {02184632},
     language = {en},
     url = {jtnb.centre-mersenne.org/item/JTNB_2004__16_1_65_0/}
}
Jean-François Burnol. Two complete and minimal systems associated with the zeros of the Riemann zeta function. Journal de Théorie des Nombres de Bordeaux, Tome 16 (2004) no. 1, pp. 65-94. doi : 10.5802/jtnb.434. https://jtnb.centre-mersenne.org/item/JTNB_2004__16_1_65_0/

[1] R. P. Boas, Sums representing Fourier transforms, Proc. Am. Math. Soc. 3 (1952), 444–447. | MR 48626 | Zbl 0047.10401

[2] L. de Branges, Self-reciprocal functions, J. Math. Anal. Appl. 9 (1964) 433–457. | MR 213826 | Zbl 0134.10504

[3] L. de Branges, Hilbert spaces of entire functions, Prentice Hall Inc., Englewood Cliffs, 1968. | MR 229011 | Zbl 0157.43301

[4] L. de Branges, The convergence of Euler products, J. Funct. Anal. 107 (1992), no. 1, 122–210. | MR 1165869 | Zbl 0768.46009

[5] L. de Branges, A conjecture which implies the Riemann hypothesis, J. Funct. Anal. 121 (1994), no. 1, 117–184. | MR 1270590 | Zbl 0802.46039

[6] J.-F. Burnol, Sur certains espaces de Hilbert de fonctions entières, liés à la transformation de Fourier et aux fonctions L de Dirichlet et de Riemann, C. R. Acad. Sci. Paris, Ser. I 333 (2001), 201–206. | MR 1851625 | Zbl 1057.11039

[7] J.-F. Burnol, On Fourier and Zeta(s), 50 p., Habilitationsschrift (2001-2002), Forum Mathematicum, to appear (2004). | MR 2096473 | Zbl 1077.11058

[8] J.-F. Burnol, Sur les “espaces de Sonine” associés par de Branges à la transformation de Fourier, C. R. Acad. Sci. Paris, Ser. I 335 (2002), 689–692. | MR 1941650 | Zbl 1032.46054

[9] J.-F. Burnol, Des équations de Dirac et de Schrödinger pour la transformation de Fourier, C. R. Acad. Sci. Paris, Ser. I 336 (2003), 919–924. | MR 1994595 | Zbl 1083.34063

[10] R. J. Duffin, Representation of Fourier integrals as sums I, Bull. Am. Math. Soc. 51 (1945), 447–455. | MR 12153 | Zbl 0060.25606

[11] R. J. Duffin, Representation of Fourier integrals as sums II, Proc. Am. Math. Soc. 1 (1950), 250–255. | MR 34465 | Zbl 0037.19802

[12] R. J. Duffin, Representation of Fourier integrals as sums III, Proc. Am. Math. Soc. 8 (1957), 272–277. | MR 84629 | Zbl 0078.09804

[13] R. J. Duffin, H. F. Weinberger, Dualizing the Poisson summation formula, Proc. Natl. Acad. Sci. USA 88 (1991), 7348–7350. | MR 1119734 | Zbl 0771.42001

[14] R. J. Duffin, H. F. Weinberger, On dualizing a multivariable Poisson summation formula, Journ. of Fourier Anal. and Appl. 3 (5) (1997), 487–497. | MR 1491929 | Zbl 0892.42002

[15] H. Dym, H.P. McKean, Fourier series and integrals, Academic Press, 1972. | MR 442564 | Zbl 0242.42001

[16] H. Dym, H.P. McKean, Gaussian processes, function theory, and the inverse spectral problem, Probability and Mathematical Statistics, Vol. 31. Academic Press, New York-London, 1976. | MR 448523 | Zbl 0327.60029

[17] M. L. Gorbachuk, V. I. Gorbachuk, M. G. Krein’s lectures on entire operators, Operator Theory: Advances and Applications, 97. Birkhäuser Verlag, Basel, 1997. | Zbl 0883.47008

[18] K. Hoffman, Banach spaces of analytic functions, Reprint of the 1962 original. Dover Publications, Inc., New York, 1988. | MR 1102893 | Zbl 0734.46033

[19] M.G. Krein, Theory of entire functions of exponential type (in Russian), Izv. Akad. Nauk. SSSR, Ser. Mat. 11 (1947), No. 4, 309–326. | MR 22252 | Zbl 0033.36501

[20] B.Y. Levin, Distribution of Zeros of Entire Functions, American Mathematical Society, Providence 1980. Transl. and rev. from the 1956 Russian and 1962 German editions. | MR 589888 | Zbl 0152.06703

[21] R.E.A.C. Paley, N. Wiener, Fourier Transforms in the Complex Domain, Amer. Math. Soc., Providence, Rhode Island, 1934. | MR 1451142 | Zbl 0011.01601

[22] J. Rovnyak, V. Rovnyak, Sonine spaces of entire functions, J. Math. Anal. Appl., 27 (1969), 68–100. | MR 243333 | Zbl 0159.17303

[23] N. Sonine, Recherches sur les fonctions cylindriques et le développement des fonctions continues en séries, Math. Ann. 16 (1880), 1–80. | MR 1510013

[24] E. C. Titchmarsh, The Theory of the Riemann-Zeta Function, 2nd ed. Edited and with a preface by D. R. Heath-Brown. Clarendon Press, Oxford 1986. | MR 882550 | Zbl 0601.10026

[25] H. F. Weinberger, Fourier transforms of Moebius series. Dissertation (1950), Carnegie-Mellon University, Pittsburgh.